Gunslinger3D commited on
Commit
66dc4a4
·
verified ·
1 Parent(s): aa5b13f

Upload 8 files

Browse files
checkpoint-1000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: microsoft/phi-2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/phi-2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "fc1",
24
+ "fc2",
25
+ "q_proj",
26
+ "dense",
27
+ "v_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM"
30
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a36a3b73d5ff05abb5977d27e8f2b1b26f667a0ddfb2231f05c5a383d691576
3
+ size 94422368
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07c93483b76b87ce2f267a5d71f9beaabe186cca5d1b9dccf119eae3f277307e
3
+ size 47724385
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1698d89fdd66ec4ef945e947d531ef003b4626bc0ca789dcfe9ea5fc54b20faf
3
+ size 14575
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae472c841adf3819dda221ed75de8337578682a35bb543a62b8daee29826e9bf
3
+ size 627
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.09502185136079788,
3
+ "best_model_checkpoint": "fine-tuning-Phi2-with-webglm-qa-with-lora_7/checkpoint-1000",
4
+ "epoch": 15.723270440251572,
5
+ "eval_steps": 20,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.31,
13
+ "learning_rate": 1.6666666666666667e-05,
14
+ "loss": 7.3505,
15
+ "step": 20
16
+ },
17
+ {
18
+ "epoch": 0.31,
19
+ "eval_loss": 6.286308765411377,
20
+ "eval_runtime": 25.4764,
21
+ "eval_samples_per_second": 0.864,
22
+ "eval_steps_per_second": 0.432,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.63,
27
+ "learning_rate": 3.3333333333333335e-05,
28
+ "loss": 4.0914,
29
+ "step": 40
30
+ },
31
+ {
32
+ "epoch": 0.63,
33
+ "eval_loss": 0.9255164861679077,
34
+ "eval_runtime": 25.461,
35
+ "eval_samples_per_second": 0.864,
36
+ "eval_steps_per_second": 0.432,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.94,
41
+ "learning_rate": 5e-05,
42
+ "loss": 0.6517,
43
+ "step": 60
44
+ },
45
+ {
46
+ "epoch": 0.94,
47
+ "eval_loss": 0.576193630695343,
48
+ "eval_runtime": 25.4995,
49
+ "eval_samples_per_second": 0.863,
50
+ "eval_steps_per_second": 0.431,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 1.26,
55
+ "learning_rate": 4.893617021276596e-05,
56
+ "loss": 0.4621,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 1.26,
61
+ "eval_loss": 0.40622055530548096,
62
+ "eval_runtime": 25.4724,
63
+ "eval_samples_per_second": 0.864,
64
+ "eval_steps_per_second": 0.432,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 1.57,
69
+ "learning_rate": 4.787234042553192e-05,
70
+ "loss": 0.3128,
71
+ "step": 100
72
+ },
73
+ {
74
+ "epoch": 1.57,
75
+ "eval_loss": 0.30563685297966003,
76
+ "eval_runtime": 25.4374,
77
+ "eval_samples_per_second": 0.865,
78
+ "eval_steps_per_second": 0.432,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 1.89,
83
+ "learning_rate": 4.680851063829788e-05,
84
+ "loss": 0.2536,
85
+ "step": 120
86
+ },
87
+ {
88
+ "epoch": 1.89,
89
+ "eval_loss": 0.2603812515735626,
90
+ "eval_runtime": 25.4763,
91
+ "eval_samples_per_second": 0.864,
92
+ "eval_steps_per_second": 0.432,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 2.2,
97
+ "learning_rate": 4.574468085106383e-05,
98
+ "loss": 0.2227,
99
+ "step": 140
100
+ },
101
+ {
102
+ "epoch": 2.2,
103
+ "eval_loss": 0.22473430633544922,
104
+ "eval_runtime": 25.4963,
105
+ "eval_samples_per_second": 0.863,
106
+ "eval_steps_per_second": 0.431,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 2.52,
111
+ "learning_rate": 4.468085106382979e-05,
112
+ "loss": 0.1901,
113
+ "step": 160
114
+ },
115
+ {
116
+ "epoch": 2.52,
117
+ "eval_loss": 0.2041008621454239,
118
+ "eval_runtime": 25.459,
119
+ "eval_samples_per_second": 0.864,
120
+ "eval_steps_per_second": 0.432,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 2.83,
125
+ "learning_rate": 4.3617021276595746e-05,
126
+ "loss": 0.176,
127
+ "step": 180
128
+ },
129
+ {
130
+ "epoch": 2.83,
131
+ "eval_loss": 0.1812312752008438,
132
+ "eval_runtime": 25.4868,
133
+ "eval_samples_per_second": 0.863,
134
+ "eval_steps_per_second": 0.432,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 3.14,
139
+ "learning_rate": 4.2553191489361704e-05,
140
+ "loss": 0.1453,
141
+ "step": 200
142
+ },
143
+ {
144
+ "epoch": 3.14,
145
+ "eval_loss": 0.16830970346927643,
146
+ "eval_runtime": 25.481,
147
+ "eval_samples_per_second": 0.863,
148
+ "eval_steps_per_second": 0.432,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 3.46,
153
+ "learning_rate": 4.148936170212766e-05,
154
+ "loss": 0.1557,
155
+ "step": 220
156
+ },
157
+ {
158
+ "epoch": 3.46,
159
+ "eval_loss": 0.15921901166439056,
160
+ "eval_runtime": 25.5028,
161
+ "eval_samples_per_second": 0.863,
162
+ "eval_steps_per_second": 0.431,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 3.77,
167
+ "learning_rate": 4.0425531914893614e-05,
168
+ "loss": 0.1441,
169
+ "step": 240
170
+ },
171
+ {
172
+ "epoch": 3.77,
173
+ "eval_loss": 0.14882861077785492,
174
+ "eval_runtime": 25.4427,
175
+ "eval_samples_per_second": 0.865,
176
+ "eval_steps_per_second": 0.432,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 4.09,
181
+ "learning_rate": 3.936170212765958e-05,
182
+ "loss": 0.1282,
183
+ "step": 260
184
+ },
185
+ {
186
+ "epoch": 4.09,
187
+ "eval_loss": 0.1429978758096695,
188
+ "eval_runtime": 25.4905,
189
+ "eval_samples_per_second": 0.863,
190
+ "eval_steps_per_second": 0.432,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 4.4,
195
+ "learning_rate": 3.829787234042553e-05,
196
+ "loss": 0.1215,
197
+ "step": 280
198
+ },
199
+ {
200
+ "epoch": 4.4,
201
+ "eval_loss": 0.13476386666297913,
202
+ "eval_runtime": 25.4804,
203
+ "eval_samples_per_second": 0.863,
204
+ "eval_steps_per_second": 0.432,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 4.72,
209
+ "learning_rate": 3.723404255319149e-05,
210
+ "loss": 0.1217,
211
+ "step": 300
212
+ },
213
+ {
214
+ "epoch": 4.72,
215
+ "eval_loss": 0.13230670988559723,
216
+ "eval_runtime": 25.4706,
217
+ "eval_samples_per_second": 0.864,
218
+ "eval_steps_per_second": 0.432,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 5.03,
223
+ "learning_rate": 3.617021276595745e-05,
224
+ "loss": 0.117,
225
+ "step": 320
226
+ },
227
+ {
228
+ "epoch": 5.03,
229
+ "eval_loss": 0.12707628309726715,
230
+ "eval_runtime": 25.4283,
231
+ "eval_samples_per_second": 0.865,
232
+ "eval_steps_per_second": 0.433,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 5.35,
237
+ "learning_rate": 3.5106382978723407e-05,
238
+ "loss": 0.109,
239
+ "step": 340
240
+ },
241
+ {
242
+ "epoch": 5.35,
243
+ "eval_loss": 0.12554581463336945,
244
+ "eval_runtime": 25.4583,
245
+ "eval_samples_per_second": 0.864,
246
+ "eval_steps_per_second": 0.432,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 5.66,
251
+ "learning_rate": 3.4042553191489365e-05,
252
+ "loss": 0.1094,
253
+ "step": 360
254
+ },
255
+ {
256
+ "epoch": 5.66,
257
+ "eval_loss": 0.12099047005176544,
258
+ "eval_runtime": 25.4606,
259
+ "eval_samples_per_second": 0.864,
260
+ "eval_steps_per_second": 0.432,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 5.97,
265
+ "learning_rate": 3.2978723404255317e-05,
266
+ "loss": 0.1057,
267
+ "step": 380
268
+ },
269
+ {
270
+ "epoch": 5.97,
271
+ "eval_loss": 0.11747618019580841,
272
+ "eval_runtime": 25.4382,
273
+ "eval_samples_per_second": 0.865,
274
+ "eval_steps_per_second": 0.432,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 6.29,
279
+ "learning_rate": 3.191489361702128e-05,
280
+ "loss": 0.0937,
281
+ "step": 400
282
+ },
283
+ {
284
+ "epoch": 6.29,
285
+ "eval_loss": 0.11580007523298264,
286
+ "eval_runtime": 25.4149,
287
+ "eval_samples_per_second": 0.866,
288
+ "eval_steps_per_second": 0.433,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 6.6,
293
+ "learning_rate": 3.085106382978723e-05,
294
+ "loss": 0.0942,
295
+ "step": 420
296
+ },
297
+ {
298
+ "epoch": 6.6,
299
+ "eval_loss": 0.11587951332330704,
300
+ "eval_runtime": 25.4544,
301
+ "eval_samples_per_second": 0.864,
302
+ "eval_steps_per_second": 0.432,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 6.92,
307
+ "learning_rate": 2.9787234042553192e-05,
308
+ "loss": 0.1007,
309
+ "step": 440
310
+ },
311
+ {
312
+ "epoch": 6.92,
313
+ "eval_loss": 0.11250220984220505,
314
+ "eval_runtime": 25.4316,
315
+ "eval_samples_per_second": 0.865,
316
+ "eval_steps_per_second": 0.433,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 7.23,
321
+ "learning_rate": 2.8723404255319154e-05,
322
+ "loss": 0.0876,
323
+ "step": 460
324
+ },
325
+ {
326
+ "epoch": 7.23,
327
+ "eval_loss": 0.11185076832771301,
328
+ "eval_runtime": 25.4765,
329
+ "eval_samples_per_second": 0.864,
330
+ "eval_steps_per_second": 0.432,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 7.55,
335
+ "learning_rate": 2.765957446808511e-05,
336
+ "loss": 0.0894,
337
+ "step": 480
338
+ },
339
+ {
340
+ "epoch": 7.55,
341
+ "eval_loss": 0.1098945215344429,
342
+ "eval_runtime": 25.4185,
343
+ "eval_samples_per_second": 0.866,
344
+ "eval_steps_per_second": 0.433,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 7.86,
349
+ "learning_rate": 2.6595744680851064e-05,
350
+ "loss": 0.0827,
351
+ "step": 500
352
+ },
353
+ {
354
+ "epoch": 7.86,
355
+ "eval_loss": 0.10724210739135742,
356
+ "eval_runtime": 25.4969,
357
+ "eval_samples_per_second": 0.863,
358
+ "eval_steps_per_second": 0.431,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 8.18,
363
+ "learning_rate": 2.5531914893617022e-05,
364
+ "loss": 0.0894,
365
+ "step": 520
366
+ },
367
+ {
368
+ "epoch": 8.18,
369
+ "eval_loss": 0.10687847435474396,
370
+ "eval_runtime": 25.4493,
371
+ "eval_samples_per_second": 0.864,
372
+ "eval_steps_per_second": 0.432,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 8.49,
377
+ "learning_rate": 2.446808510638298e-05,
378
+ "loss": 0.0805,
379
+ "step": 540
380
+ },
381
+ {
382
+ "epoch": 8.49,
383
+ "eval_loss": 0.10752053558826447,
384
+ "eval_runtime": 25.4419,
385
+ "eval_samples_per_second": 0.865,
386
+ "eval_steps_per_second": 0.432,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 8.81,
391
+ "learning_rate": 2.340425531914894e-05,
392
+ "loss": 0.0782,
393
+ "step": 560
394
+ },
395
+ {
396
+ "epoch": 8.81,
397
+ "eval_loss": 0.10425343364477158,
398
+ "eval_runtime": 25.4865,
399
+ "eval_samples_per_second": 0.863,
400
+ "eval_steps_per_second": 0.432,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 9.12,
405
+ "learning_rate": 2.2340425531914894e-05,
406
+ "loss": 0.0881,
407
+ "step": 580
408
+ },
409
+ {
410
+ "epoch": 9.12,
411
+ "eval_loss": 0.1033911183476448,
412
+ "eval_runtime": 25.4549,
413
+ "eval_samples_per_second": 0.864,
414
+ "eval_steps_per_second": 0.432,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 9.43,
419
+ "learning_rate": 2.1276595744680852e-05,
420
+ "loss": 0.0839,
421
+ "step": 600
422
+ },
423
+ {
424
+ "epoch": 9.43,
425
+ "eval_loss": 0.10145573318004608,
426
+ "eval_runtime": 25.4481,
427
+ "eval_samples_per_second": 0.865,
428
+ "eval_steps_per_second": 0.432,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 9.75,
433
+ "learning_rate": 2.0212765957446807e-05,
434
+ "loss": 0.0694,
435
+ "step": 620
436
+ },
437
+ {
438
+ "epoch": 9.75,
439
+ "eval_loss": 0.10002648830413818,
440
+ "eval_runtime": 25.4089,
441
+ "eval_samples_per_second": 0.866,
442
+ "eval_steps_per_second": 0.433,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 10.06,
447
+ "learning_rate": 1.9148936170212766e-05,
448
+ "loss": 0.068,
449
+ "step": 640
450
+ },
451
+ {
452
+ "epoch": 10.06,
453
+ "eval_loss": 0.10073428601026535,
454
+ "eval_runtime": 25.4963,
455
+ "eval_samples_per_second": 0.863,
456
+ "eval_steps_per_second": 0.431,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 10.38,
461
+ "learning_rate": 1.8085106382978724e-05,
462
+ "loss": 0.072,
463
+ "step": 660
464
+ },
465
+ {
466
+ "epoch": 10.38,
467
+ "eval_loss": 0.09940142929553986,
468
+ "eval_runtime": 25.4629,
469
+ "eval_samples_per_second": 0.864,
470
+ "eval_steps_per_second": 0.432,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 10.69,
475
+ "learning_rate": 1.7021276595744682e-05,
476
+ "loss": 0.0709,
477
+ "step": 680
478
+ },
479
+ {
480
+ "epoch": 10.69,
481
+ "eval_loss": 0.09847569465637207,
482
+ "eval_runtime": 25.5056,
483
+ "eval_samples_per_second": 0.863,
484
+ "eval_steps_per_second": 0.431,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 11.01,
489
+ "learning_rate": 1.595744680851064e-05,
490
+ "loss": 0.0712,
491
+ "step": 700
492
+ },
493
+ {
494
+ "epoch": 11.01,
495
+ "eval_loss": 0.09858354926109314,
496
+ "eval_runtime": 25.4627,
497
+ "eval_samples_per_second": 0.864,
498
+ "eval_steps_per_second": 0.432,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 11.32,
503
+ "learning_rate": 1.4893617021276596e-05,
504
+ "loss": 0.0673,
505
+ "step": 720
506
+ },
507
+ {
508
+ "epoch": 11.32,
509
+ "eval_loss": 0.09991483390331268,
510
+ "eval_runtime": 25.4891,
511
+ "eval_samples_per_second": 0.863,
512
+ "eval_steps_per_second": 0.432,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 11.64,
517
+ "learning_rate": 1.3829787234042554e-05,
518
+ "loss": 0.0669,
519
+ "step": 740
520
+ },
521
+ {
522
+ "epoch": 11.64,
523
+ "eval_loss": 0.09741941094398499,
524
+ "eval_runtime": 25.4606,
525
+ "eval_samples_per_second": 0.864,
526
+ "eval_steps_per_second": 0.432,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 11.95,
531
+ "learning_rate": 1.2765957446808511e-05,
532
+ "loss": 0.0706,
533
+ "step": 760
534
+ },
535
+ {
536
+ "epoch": 11.95,
537
+ "eval_loss": 0.0980500727891922,
538
+ "eval_runtime": 25.4509,
539
+ "eval_samples_per_second": 0.864,
540
+ "eval_steps_per_second": 0.432,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 12.26,
545
+ "learning_rate": 1.170212765957447e-05,
546
+ "loss": 0.0641,
547
+ "step": 780
548
+ },
549
+ {
550
+ "epoch": 12.26,
551
+ "eval_loss": 0.09693228453397751,
552
+ "eval_runtime": 25.436,
553
+ "eval_samples_per_second": 0.865,
554
+ "eval_steps_per_second": 0.432,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 12.58,
559
+ "learning_rate": 1.0638297872340426e-05,
560
+ "loss": 0.0652,
561
+ "step": 800
562
+ },
563
+ {
564
+ "epoch": 12.58,
565
+ "eval_loss": 0.0963829830288887,
566
+ "eval_runtime": 25.4744,
567
+ "eval_samples_per_second": 0.864,
568
+ "eval_steps_per_second": 0.432,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 12.89,
573
+ "learning_rate": 9.574468085106383e-06,
574
+ "loss": 0.0668,
575
+ "step": 820
576
+ },
577
+ {
578
+ "epoch": 12.89,
579
+ "eval_loss": 0.09619712829589844,
580
+ "eval_runtime": 25.446,
581
+ "eval_samples_per_second": 0.865,
582
+ "eval_steps_per_second": 0.432,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 13.21,
587
+ "learning_rate": 8.510638297872341e-06,
588
+ "loss": 0.0617,
589
+ "step": 840
590
+ },
591
+ {
592
+ "epoch": 13.21,
593
+ "eval_loss": 0.09718295931816101,
594
+ "eval_runtime": 25.4457,
595
+ "eval_samples_per_second": 0.865,
596
+ "eval_steps_per_second": 0.432,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 13.52,
601
+ "learning_rate": 7.446808510638298e-06,
602
+ "loss": 0.0628,
603
+ "step": 860
604
+ },
605
+ {
606
+ "epoch": 13.52,
607
+ "eval_loss": 0.09600641578435898,
608
+ "eval_runtime": 25.4516,
609
+ "eval_samples_per_second": 0.864,
610
+ "eval_steps_per_second": 0.432,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 13.84,
615
+ "learning_rate": 6.3829787234042555e-06,
616
+ "loss": 0.0637,
617
+ "step": 880
618
+ },
619
+ {
620
+ "epoch": 13.84,
621
+ "eval_loss": 0.09490146487951279,
622
+ "eval_runtime": 25.4889,
623
+ "eval_samples_per_second": 0.863,
624
+ "eval_steps_per_second": 0.432,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 14.15,
629
+ "learning_rate": 5.319148936170213e-06,
630
+ "loss": 0.0633,
631
+ "step": 900
632
+ },
633
+ {
634
+ "epoch": 14.15,
635
+ "eval_loss": 0.0950675681233406,
636
+ "eval_runtime": 25.4561,
637
+ "eval_samples_per_second": 0.864,
638
+ "eval_steps_per_second": 0.432,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 14.47,
643
+ "learning_rate": 4.255319148936171e-06,
644
+ "loss": 0.0577,
645
+ "step": 920
646
+ },
647
+ {
648
+ "epoch": 14.47,
649
+ "eval_loss": 0.09526454657316208,
650
+ "eval_runtime": 25.5288,
651
+ "eval_samples_per_second": 0.862,
652
+ "eval_steps_per_second": 0.431,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 14.78,
657
+ "learning_rate": 3.1914893617021277e-06,
658
+ "loss": 0.0646,
659
+ "step": 940
660
+ },
661
+ {
662
+ "epoch": 14.78,
663
+ "eval_loss": 0.09467268735170364,
664
+ "eval_runtime": 25.4341,
665
+ "eval_samples_per_second": 0.865,
666
+ "eval_steps_per_second": 0.432,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 15.09,
671
+ "learning_rate": 2.1276595744680853e-06,
672
+ "loss": 0.06,
673
+ "step": 960
674
+ },
675
+ {
676
+ "epoch": 15.09,
677
+ "eval_loss": 0.09462392330169678,
678
+ "eval_runtime": 25.446,
679
+ "eval_samples_per_second": 0.865,
680
+ "eval_steps_per_second": 0.432,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 15.41,
685
+ "learning_rate": 1.0638297872340427e-06,
686
+ "loss": 0.0584,
687
+ "step": 980
688
+ },
689
+ {
690
+ "epoch": 15.41,
691
+ "eval_loss": 0.09491446614265442,
692
+ "eval_runtime": 25.4603,
693
+ "eval_samples_per_second": 0.864,
694
+ "eval_steps_per_second": 0.432,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 15.72,
699
+ "learning_rate": 0.0,
700
+ "loss": 0.0638,
701
+ "step": 1000
702
+ },
703
+ {
704
+ "epoch": 15.72,
705
+ "eval_loss": 0.09502185136079788,
706
+ "eval_runtime": 25.4343,
707
+ "eval_samples_per_second": 0.865,
708
+ "eval_steps_per_second": 0.432,
709
+ "step": 1000
710
+ }
711
+ ],
712
+ "logging_steps": 20,
713
+ "max_steps": 1000,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 16,
716
+ "save_steps": 200,
717
+ "total_flos": 1.63933992517632e+17,
718
+ "train_batch_size": 2,
719
+ "trial_name": null,
720
+ "trial_params": null
721
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0625f5be598e6f058625d3231cef9487de3096ee8bbf8a08d82ab48f97747322
3
+ size 4283