--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: fine-tuning-Phi2-with-webglm-qa-with-lora_7 results: [] --- # fine-tuning-Phi2-with-webglm-qa-with-lora_7 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 60 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.3505 | 0.31 | 20 | 6.2863 | | 4.0914 | 0.63 | 40 | 0.9255 | | 0.6517 | 0.94 | 60 | 0.5762 | | 0.4621 | 1.26 | 80 | 0.4062 | | 0.3128 | 1.57 | 100 | 0.3056 | | 0.2536 | 1.89 | 120 | 0.2604 | | 0.2227 | 2.2 | 140 | 0.2247 | | 0.1901 | 2.52 | 160 | 0.2041 | | 0.176 | 2.83 | 180 | 0.1812 | | 0.1453 | 3.14 | 200 | 0.1683 | | 0.1557 | 3.46 | 220 | 0.1592 | | 0.1441 | 3.77 | 240 | 0.1488 | | 0.1282 | 4.09 | 260 | 0.1430 | | 0.1215 | 4.4 | 280 | 0.1348 | | 0.1217 | 4.72 | 300 | 0.1323 | | 0.117 | 5.03 | 320 | 0.1271 | | 0.109 | 5.35 | 340 | 0.1255 | | 0.1094 | 5.66 | 360 | 0.1210 | | 0.1057 | 5.97 | 380 | 0.1175 | | 0.0937 | 6.29 | 400 | 0.1158 | | 0.0942 | 6.6 | 420 | 0.1159 | | 0.1007 | 6.92 | 440 | 0.1125 | | 0.0876 | 7.23 | 460 | 0.1119 | | 0.0894 | 7.55 | 480 | 0.1099 | | 0.0827 | 7.86 | 500 | 0.1072 | | 0.0894 | 8.18 | 520 | 0.1069 | | 0.0805 | 8.49 | 540 | 0.1075 | | 0.0782 | 8.81 | 560 | 0.1043 | | 0.0881 | 9.12 | 580 | 0.1034 | | 0.0839 | 9.43 | 600 | 0.1015 | | 0.0694 | 9.75 | 620 | 0.1000 | | 0.068 | 10.06 | 640 | 0.1007 | | 0.072 | 10.38 | 660 | 0.0994 | | 0.0709 | 10.69 | 680 | 0.0985 | | 0.0712 | 11.01 | 700 | 0.0986 | | 0.0673 | 11.32 | 720 | 0.0999 | | 0.0669 | 11.64 | 740 | 0.0974 | | 0.0706 | 11.95 | 760 | 0.0981 | | 0.0641 | 12.26 | 780 | 0.0969 | | 0.0652 | 12.58 | 800 | 0.0964 | | 0.0668 | 12.89 | 820 | 0.0962 | | 0.0617 | 13.21 | 840 | 0.0972 | | 0.0628 | 13.52 | 860 | 0.0960 | | 0.0637 | 13.84 | 880 | 0.0949 | | 0.0633 | 14.15 | 900 | 0.0951 | | 0.0577 | 14.47 | 920 | 0.0953 | | 0.0646 | 14.78 | 940 | 0.0947 | | 0.06 | 15.09 | 960 | 0.0946 | | 0.0584 | 15.41 | 980 | 0.0949 | | 0.0638 | 15.72 | 1000 | 0.0950 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0