File size: 3,987 Bytes
74e46ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: fine-tuning-Phi2-with-webglm-qa-with-lora_8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuning-Phi2-with-webglm-qa-with-lora_8

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0935

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 60
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.1823        | 0.31  | 20   | 6.1082          |
| 4.0           | 0.63  | 40   | 0.9863          |
| 0.7159        | 0.94  | 60   | 0.6293          |
| 0.4994        | 1.26  | 80   | 0.4239          |
| 0.3187        | 1.57  | 100  | 0.3044          |
| 0.251         | 1.89  | 120  | 0.2567          |
| 0.2189        | 2.2   | 140  | 0.2206          |
| 0.1869        | 2.52  | 160  | 0.2000          |
| 0.1741        | 2.83  | 180  | 0.1781          |
| 0.1439        | 3.14  | 200  | 0.1638          |
| 0.1543        | 3.46  | 220  | 0.1550          |
| 0.1428        | 3.77  | 240  | 0.1455          |
| 0.127         | 4.09  | 260  | 0.1394          |
| 0.1206        | 4.4   | 280  | 0.1314          |
| 0.1206        | 4.72  | 300  | 0.1298          |
| 0.1162        | 5.03  | 320  | 0.1246          |
| 0.109         | 5.35  | 340  | 0.1235          |
| 0.1088        | 5.66  | 360  | 0.1190          |
| 0.1062        | 5.97  | 380  | 0.1157          |
| 0.0938        | 6.29  | 400  | 0.1146          |
| 0.0945        | 6.6   | 420  | 0.1133          |
| 0.1012        | 6.92  | 440  | 0.1105          |
| 0.0881        | 7.23  | 460  | 0.1109          |
| 0.0897        | 7.55  | 480  | 0.1091          |
| 0.0837        | 7.86  | 500  | 0.1060          |
| 0.0899        | 8.18  | 520  | 0.1051          |
| 0.0803        | 8.49  | 540  | 0.1041          |
| 0.0792        | 8.81  | 560  | 0.1021          |
| 0.0885        | 9.12  | 580  | 0.1000          |
| 0.0844        | 9.43  | 600  | 0.1004          |
| 0.0704        | 9.75  | 620  | 0.0992          |
| 0.0681        | 10.06 | 640  | 0.0994          |
| 0.0727        | 10.38 | 660  | 0.0977          |
| 0.0712        | 10.69 | 680  | 0.0970          |
| 0.073         | 11.01 | 700  | 0.0971          |
| 0.0683        | 11.32 | 720  | 0.0974          |
| 0.0682        | 11.64 | 740  | 0.0964          |
| 0.0716        | 11.95 | 760  | 0.0962          |
| 0.0645        | 12.26 | 780  | 0.0948          |
| 0.0662        | 12.58 | 800  | 0.0947          |
| 0.0677        | 12.89 | 820  | 0.0947          |
| 0.0626        | 13.21 | 840  | 0.0953          |
| 0.0628        | 13.52 | 860  | 0.0946          |
| 0.0642        | 13.84 | 880  | 0.0937          |
| 0.0641        | 14.15 | 900  | 0.0939          |
| 0.0587        | 14.47 | 920  | 0.0939          |
| 0.0664        | 14.78 | 940  | 0.0933          |
| 0.061         | 15.09 | 960  | 0.0931          |
| 0.0596        | 15.41 | 980  | 0.0934          |
| 0.0646        | 15.72 | 1000 | 0.0935          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0