--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: fine-tuning-Phi2-with-webglm-qa-with-lora_9 results: [] --- # fine-tuning-Phi2-with-webglm-qa-with-lora_9 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 60 - training_steps: 700 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9045 | 0.16 | 10 | 1.6827 | | 1.6798 | 0.32 | 20 | 1.5996 | | 1.5222 | 0.48 | 30 | 1.4548 | | 1.286 | 0.64 | 40 | 1.2269 | | 1.0827 | 0.8 | 50 | 1.1089 | | 0.9913 | 0.96 | 60 | 1.0021 | | 0.881 | 1.13 | 70 | 0.8796 | | 0.7673 | 1.29 | 80 | 0.7637 | | 0.6315 | 1.45 | 90 | 0.6618 | | 0.554 | 1.61 | 100 | 0.5964 | | 0.5132 | 1.77 | 110 | 0.5487 | | 0.4915 | 1.93 | 120 | 0.5030 | | 0.4787 | 2.09 | 130 | 0.4705 | | 0.4298 | 2.25 | 140 | 0.4451 | | 0.4009 | 2.41 | 150 | 0.4099 | | 0.3886 | 2.57 | 160 | 0.3889 | | 0.3729 | 2.73 | 170 | 0.3674 | | 0.3236 | 2.89 | 180 | 0.3527 | | 0.3377 | 3.05 | 190 | 0.3407 | | 0.3356 | 3.22 | 200 | 0.3261 | | 0.3083 | 3.38 | 210 | 0.3121 | | 0.2794 | 3.54 | 220 | 0.2992 | | 0.2917 | 3.7 | 230 | 0.2926 | | 0.2895 | 3.86 | 240 | 0.2879 | | 0.2764 | 4.02 | 250 | 0.2782 | | 0.2585 | 4.18 | 260 | 0.2732 | | 0.2489 | 4.34 | 270 | 0.2678 | | 0.2401 | 4.5 | 280 | 0.2591 | | 0.2489 | 4.66 | 290 | 0.2573 | | 0.2529 | 4.82 | 300 | 0.2501 | | 0.2637 | 4.98 | 310 | 0.2455 | | 0.255 | 5.14 | 320 | 0.2411 | | 0.2266 | 5.31 | 330 | 0.2370 | | 0.2209 | 5.47 | 340 | 0.2326 | | 0.2311 | 5.63 | 350 | 0.2276 | | 0.2203 | 5.79 | 360 | 0.2275 | | 0.2048 | 5.95 | 370 | 0.2210 | | 0.2133 | 6.11 | 380 | 0.2179 | | 0.2045 | 6.27 | 390 | 0.2142 | | 0.2053 | 6.43 | 400 | 0.2137 | | 0.1898 | 6.59 | 410 | 0.2102 | | 0.1897 | 6.75 | 420 | 0.2073 | | 0.2141 | 6.91 | 430 | 0.2040 | | 0.1872 | 7.07 | 440 | 0.2028 | | 0.1938 | 7.23 | 450 | 0.1998 | | 0.187 | 7.4 | 460 | 0.2004 | | 0.1782 | 7.56 | 470 | 0.1973 | | 0.1908 | 7.72 | 480 | 0.1967 | | 0.1899 | 7.88 | 490 | 0.1912 | | 0.1823 | 8.04 | 500 | 0.1912 | | 0.1769 | 8.2 | 510 | 0.1915 | | 0.1774 | 8.36 | 520 | 0.1909 | | 0.1793 | 8.52 | 530 | 0.1890 | | 0.1853 | 8.68 | 540 | 0.1880 | | 0.1785 | 8.84 | 550 | 0.1861 | | 0.1515 | 9.0 | 560 | 0.1845 | | 0.1689 | 9.16 | 570 | 0.1845 | | 0.1552 | 9.32 | 580 | 0.1836 | | 0.1712 | 9.49 | 590 | 0.1828 | | 0.1642 | 9.65 | 600 | 0.1818 | | 0.1703 | 9.81 | 610 | 0.1806 | | 0.1772 | 9.97 | 620 | 0.1804 | | 0.1615 | 10.13 | 630 | 0.1796 | | 0.1494 | 10.29 | 640 | 0.1801 | | 0.1702 | 10.45 | 650 | 0.1798 | | 0.1656 | 10.61 | 660 | 0.1787 | | 0.1688 | 10.77 | 670 | 0.1782 | | 0.1452 | 10.93 | 680 | 0.1780 | | 0.1732 | 11.09 | 690 | 0.1782 | | 0.1719 | 11.25 | 700 | 0.1781 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0