--- library_name: transformers tags: - mergekit - merge base_model: - lemon07r/Gemma-2-Ataraxy-9B - wzhouad/gemma-2-9b-it-WPO-HB - rtzr/ko-gemma-2-9b-it - ghost613/gemma9_on_korean_summary_events - rtzr/ko-gemma-2-9b-it model-index: - name: Gemma-Ko-Merge results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 64.16 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 38.79 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.15 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 11.41 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 9.12 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.99 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Gunulhona/Gemma-Ko-Merge name: Open LLM Leaderboard --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the breadcrumbs_ties merge method using [lemon07r/Gemma-2-Ataraxy-9B](https://huggingface.co/lemon07r/Gemma-2-Ataraxy-9B) as a base. ### Models Merged The following models were included in the merge: * [wzhouad/gemma-2-9b-it-WPO-HB](https://huggingface.co/wzhouad/gemma-2-9b-it-WPO-HB) * [rtzr/ko-gemma-2-9b-it](https://huggingface.co/rtzr/ko-gemma-2-9b-it) + [ghost613/gemma9_on_korean_summary_events](https://huggingface.co/ghost613/gemma9_on_korean_summary_events) * [rtzr/ko-gemma-2-9b-it](https://huggingface.co/rtzr/ko-gemma-2-9b-it) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: lemon07r/Gemma-2-Ataraxy-9B layer_range: [0, 42] parameters: weight: 1 density: 0.7 gamma: 0.03 - model: wzhouad/gemma-2-9b-it-WPO-HB layer_range: [0, 42] parameters: weight: 1 density: 0.42 gamma: 0.03 - model: rtzr/ko-gemma-2-9b-it layer_range: [0, 42] parameters: weight: 1 density: 0.42 gamma: 0.03 - model: rtzr/ko-gemma-2-9b-it+ghost613/gemma9_on_korean_summary_events # lora model loading layer_range: [0, 42] parameters: weight: 1 density: 0.42 gamma: 0.03 merge_method: breadcrumbs_ties base_model: lemon07r/Gemma-2-Ataraxy-9B dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gunulhona__Gemma-Ko-Merge) | Metric |Value| |-------------------|----:| |Avg. |25.94| |IFEval (0-Shot) |64.16| |BBH (3-Shot) |38.79| |MATH Lvl 5 (4-Shot)| 0.15| |GPQA (0-shot) |11.41| |MuSR (0-shot) | 9.12| |MMLU-PRO (5-shot) |31.99|