File size: 1,457 Bytes
4730e34 f736cb3 4730e34 135dc1d f736cb3 4730e34 f736cb3 4730e34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-re-attention-seq-512
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-re-attention-seq-512
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0170
- Rouge1: 34.1887
- Rouge2: 25.9559
- Rougel: 32.5277
- Rougelsum: 33.5841
- Gen Len: 25.9109
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.149 | 1.0 | 18247 | 1.0170 | 34.1887 | 25.9559 | 32.5277 | 33.5841 | 25.9109 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|