a2c-PandaReachDense-v2 / config.json
H4nan's picture
Initial commit
1956813
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd79b488f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd79b477480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684961175439410668, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhtDXPv0hL70KIhA/htDXPv0hL70KIhA/htDXPv0hL70KIhA/htDXPv0hL70KIhA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACeGXPgY0BD4ZMJ8/GXm2P6lL974cpy6+61aCv6z2mb80N6c/T09mP3dJ1j3ucdC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACG0Nc+/SEvvQoiED+55ta7qS/iuswxMbyG0Nc+/SEvvQoiED+55ta7qS/iuswxMbyG0Nc+/SEvvQoiED+55ta7qS/iuswxMbyG0Nc+/SEvvQoiED+55ta7qS/iuswxMbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42151278 -0.04275702 0.5630194 ]\n [ 0.42151278 -0.04275702 0.5630194 ]\n [ 0.42151278 -0.04275702 0.5630194 ]\n [ 0.42151278 -0.04275702 0.5630194 ]]", "desired_goal": "[[ 0.29663876 0.1291047 1.2436553 ]\n [ 1.4255706 -0.48299912 -0.17055935]\n [-1.0182775 -1.2028403 1.3063722 ]\n [ 0.89964765 0.10463231 -1.6284769 ]]", "observation": "[[ 0.42151278 -0.04275702 0.5630194 -0.00655827 -0.00172566 -0.0108151 ]\n [ 0.42151278 -0.04275702 0.5630194 -0.00655827 -0.00172566 -0.0108151 ]\n [ 0.42151278 -0.04275702 0.5630194 -0.00655827 -0.00172566 -0.0108151 ]\n [ 0.42151278 -0.04275702 0.5630194 -0.00655827 -0.00172566 -0.0108151 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATVB/vFn6dr0cx4Q+mKzMvcFDjT101Fk+cRFRvU5PT7yZnOY9qVLcPX3h+73ZvQw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01558311 -0.06029734 0.25933158]\n [-0.09993857 0.06897689 0.2127245 ]\n [-0.05104202 -0.01265319 0.11260337]\n [ 0.10757954 -0.12298868 0.13744296]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQWZn0Tv1B8CUhpRSlIwBbJRLMowBdJRHQKqLQkpqh111fZQoaAZoCWgPQwitLxLack4NwJSGlFKUaBVLMmgWR0CqisbvgFX8dX2UKGgGaAloD0MI9phIaTbvC8CUhpRSlGgVSzJoFkdAqopJUaQ3gnV9lChoBmgJaA9DCOOON/ktegbAlIaUUpRoFUsyaBZHQKqJ0WIoE0V1fZQoaAZoCWgPQwjiytk7ow0NwJSGlFKUaBVLMmgWR0CqjEwyZa3adX2UKGgGaAloD0MIB+qURzdiBcCUhpRSlGgVSzJoFkdAqovQ0bcXWXV9lChoBmgJaA9DCGXkLOxpZwPAlIaUUpRoFUsyaBZHQKqLUyjYZl51fZQoaAZoCWgPQwjqW+Z0WWwLwJSGlFKUaBVLMmgWR0CqittKh+OPdX2UKGgGaAloD0MIOGVuvhH9BMCUhpRSlGgVSzJoFkdAqo3crPMSsnV9lChoBmgJaA9DCB6pvvOLsg7AlIaUUpRoFUsyaBZHQKqNYipNsWR1fZQoaAZoCWgPQwjJjo1AvI4IwJSGlFKUaBVLMmgWR0CqjOVUEPlNdX2UKGgGaAloD0MIXvI/+buXB8CUhpRSlGgVSzJoFkdAqoxuJFb3XnV9lChoBmgJaA9DCNVamIV2LgnAlIaUUpRoFUsyaBZHQKqPmlyBCld1fZQoaAZoCWgPQwiyhLUxdmIPwJSGlFKUaBVLMmgWR0Cqjx/D1oQGdX2UKGgGaAloD0MIGjVfJR9bCsCUhpRSlGgVSzJoFkdAqo6jL+xW1nV9lChoBmgJaA9DCJtattYXiQ/AlIaUUpRoFUsyaBZHQKqOLIMjNY91fZQoaAZoCWgPQwgO+WcG8cEGwJSGlFKUaBVLMmgWR0CqkVWk8A7xdX2UKGgGaAloD0MIwCZr1EPUEsCUhpRSlGgVSzJoFkdAqpDbIzWPLnV9lChoBmgJaA9DCDkJpS+E/BPAlIaUUpRoFUsyaBZHQKqQXiyY5T91fZQoaAZoCWgPQwhHOC140VcOwJSGlFKUaBVLMmgWR0Cqj+bhFVkudX2UKGgGaAloD0MIwCUA/5SqB8CUhpRSlGgVSzJoFkdAqpM7eXRgJHV9lChoBmgJaA9DCBvUfmsn6gTAlIaUUpRoFUsyaBZHQKqSwR9PUKB1fZQoaAZoCWgPQwhmoDL+fYYGwJSGlFKUaBVLMmgWR0CqkkR0EHMVdX2UKGgGaAloD0MIKEnXTL75BsCUhpRSlGgVSzJoFkdAqpHNf9gndHV9lChoBmgJaA9DCE7udygKdAnAlIaUUpRoFUsyaBZHQKqVG9C/oJR1fZQoaAZoCWgPQwiXGqGfqfcFwJSGlFKUaBVLMmgWR0CqlKF7+kxidX2UKGgGaAloD0MIa7jIPV3dBcCUhpRSlGgVSzJoFkdAqpQlHH3lCHV9lChoBmgJaA9DCLiswmaASwXAlIaUUpRoFUsyaBZHQKqTrmfXf651fZQoaAZoCWgPQwiJKZFELwMKwJSGlFKUaBVLMmgWR0Cqlwnzg/C7dX2UKGgGaAloD0MIpfRMLzEWBsCUhpRSlGgVSzJoFkdAqpaPdAPd23V9lChoBmgJaA9DCL7bvHFSuArAlIaUUpRoFUsyaBZHQKqWEs8PnSx1fZQoaAZoCWgPQwj5hsJn6yABwJSGlFKUaBVLMmgWR0CqlZvuogmrdX2UKGgGaAloD0MI7ISX4NRHCcCUhpRSlGgVSzJoFkdAqpkdwBHTZ3V9lChoBmgJaA9DCIf9nlinygDAlIaUUpRoFUsyaBZHQKqYo3dbgTB1fZQoaAZoCWgPQwjsia4LP7gEwJSGlFKUaBVLMmgWR0CqmCbBGhEjdX2UKGgGaAloD0MIsaVHUz05CMCUhpRSlGgVSzJoFkdAqpev9DQZ43V9lChoBmgJaA9DCG2RtBt9LAXAlIaUUpRoFUsyaBZHQKqbAZPVNHp1fZQoaAZoCWgPQwhX6INlbKgAwJSGlFKUaBVLMmgWR0CqmogWac7RdX2UKGgGaAloD0MIHyxjQzc7AcCUhpRSlGgVSzJoFkdAqpoLkfcN6XV9lChoBmgJaA9DCJ/Nqs/VFgXAlIaUUpRoFUsyaBZHQKqZlZL7Ged1fZQoaAZoCWgPQwg/qfbpeGwIwJSGlFKUaBVLMmgWR0CqnR72criEdX2UKGgGaAloD0MI41Eq4Qk9EcCUhpRSlGgVSzJoFkdAqpylaIN3GHV9lChoBmgJaA9DCNqqJLIPEgTAlIaUUpRoFUsyaBZHQKqcKOFQEZB1fZQoaAZoCWgPQwhHBOPg0vECwJSGlFKUaBVLMmgWR0Cqm7K8lHBldX2UKGgGaAloD0MIhgFLrmJRCcCUhpRSlGgVSzJoFkdAqp8dWZJCjXV9lChoBmgJaA9DCJVIopdRzADAlIaUUpRoFUsyaBZHQKqeoyC4Bmx1fZQoaAZoCWgPQwjCacGLvgIEwJSGlFKUaBVLMmgWR0CqnibkOqecdX2UKGgGaAloD0MIls6HZwnyA8CUhpRSlGgVSzJoFkdAqp2wprk8zXV9lChoBmgJaA9DCCKmRBK9jAnAlIaUUpRoFUsyaBZHQKqhMDTz/ZN1fZQoaAZoCWgPQwjWxtgJL4EGwJSGlFKUaBVLMmgWR0CqoLX36AOKdX2UKGgGaAloD0MI8IgK1c1lDMCUhpRSlGgVSzJoFkdAqqA5Wq94/3V9lChoBmgJaA9DCDS9xFimPwzAlIaUUpRoFUsyaBZHQKqfw43m3fB1fZQoaAZoCWgPQwgv+Z/83ZsLwJSGlFKUaBVLMmgWR0CqoyZ44ZMtdX2UKGgGaAloD0MIcAZ/v5gtAMCUhpRSlGgVSzJoFkdAqqKsKRdQf3V9lChoBmgJaA9DCEOM17yqEwXAlIaUUpRoFUsyaBZHQKqiL3EAHVx1fZQoaAZoCWgPQwhz2lNyTqwJwJSGlFKUaBVLMmgWR0Cqobh9Cu2adX2UKGgGaAloD0MI+gs9YvR8CsCUhpRSlGgVSzJoFkdAqqUt29tdiXV9lChoBmgJaA9DCOjAcoQM5AvAlIaUUpRoFUsyaBZHQKqks2fkFOh1fZQoaAZoCWgPQwhu+x7114sKwJSGlFKUaBVLMmgWR0CqpDjkdV/+dX2UKGgGaAloD0MIBcHj27sG/L+UhpRSlGgVSzJoFkdAqqPB84Pwu3V9lChoBmgJaA9DCPvm/upx/wHAlIaUUpRoFUsyaBZHQKqnCNe+mFd1fZQoaAZoCWgPQwjWqfI9I9EEwJSGlFKUaBVLMmgWR0Cqpo5WaMJhdX2UKGgGaAloD0MICVT/IJLBCcCUhpRSlGgVSzJoFkdAqqYQ/mknC3V9lChoBmgJaA9DCKXXZmMlRgHAlIaUUpRoFUsyaBZHQKqlmb1h9b51fZQoaAZoCWgPQwjfwyXHndIFwJSGlFKUaBVLMmgWR0CqqBbA1vVFdX2UKGgGaAloD0MIAMXIkjl2AMCUhpRSlGgVSzJoFkdAqqebX8O09nV9lChoBmgJaA9DCPktOllq/QHAlIaUUpRoFUsyaBZHQKqnHceKba11fZQoaAZoCWgPQwgX78ftl08JwJSGlFKUaBVLMmgWR0CqpqXeenQ6dX2UKGgGaAloD0MIuMg9Xd0RBcCUhpRSlGgVSzJoFkdAqqkibMHKOnV9lChoBmgJaA9DCIcW2c730wDAlIaUUpRoFUsyaBZHQKqopx/d69l1fZQoaAZoCWgPQwgTRrOyfcgBwJSGlFKUaBVLMmgWR0CqqCmHHmzTdX2UKGgGaAloD0MINLxZg/dVBsCUhpRSlGgVSzJoFkdAqqexuMuOCHV9lChoBmgJaA9DCJXW3xKA3wLAlIaUUpRoFUsyaBZHQKqqLi4rjHZ1fZQoaAZoCWgPQwg4ns+AerMCwJSGlFKUaBVLMmgWR0CqqbLSeAd5dX2UKGgGaAloD0MI2J3uPPFcBcCUhpRSlGgVSzJoFkdAqqk1XxOLznV9lChoBmgJaA9DCPzjvWplQgjAlIaUUpRoFUsyaBZHQKqovYDDCP91fZQoaAZoCWgPQwjerSzRWcYFwJSGlFKUaBVLMmgWR0Cqq0/HxSYPdX2UKGgGaAloD0MIoUs49BaPAsCUhpRSlGgVSzJoFkdAqqrUchkiEHV9lChoBmgJaA9DCC6sG++OjA3AlIaUUpRoFUsyaBZHQKqqV0+TvAp1fZQoaAZoCWgPQwjp1JXP8lwHwJSGlFKUaBVLMmgWR0Cqqd+HBUJfdX2UKGgGaAloD0MIbOwS1VsDAMCUhpRSlGgVSzJoFkdAqqx3fGdZq3V9lChoBmgJaA9DCGiXb31YTwPAlIaUUpRoFUsyaBZHQKqr/EYO2Ap1fZQoaAZoCWgPQwjjNa/qrLYAwJSGlFKUaBVLMmgWR0Cqq369TP0JdX2UKGgGaAloD0MIhsd+FktxA8CUhpRSlGgVSzJoFkdAqqsG6unuRnV9lChoBmgJaA9DCMVW0LTESgXAlIaUUpRoFUsyaBZHQKqtiGJvYOF1fZQoaAZoCWgPQwhw7NlzmRoAwJSGlFKUaBVLMmgWR0CqrQ0qQRwqdX2UKGgGaAloD0MIIVwBhXo6+7+UhpRSlGgVSzJoFkdAqqyPkeZG8XV9lChoBmgJaA9DCN1Dwvf+hgTAlIaUUpRoFUsyaBZHQKqsF8Jlar51fZQoaAZoCWgPQwj1TC8xlikDwJSGlFKUaBVLMmgWR0Cqro8hcJMQdX2UKGgGaAloD0MIfZI7bCJzBMCUhpRSlGgVSzJoFkdAqq4T2USqVHV9lChoBmgJaA9DCE2DonkACwDAlIaUUpRoFUsyaBZHQKqtlklNUOx1fZQoaAZoCWgPQwhcc0f/yzUDwJSGlFKUaBVLMmgWR0CqrR5wGW2PdX2UKGgGaAloD0MI93ZLcsBuCMCUhpRSlGgVSzJoFkdAqq+8MkQf63V9lChoBmgJaA9DCC18fa1LjQPAlIaUUpRoFUsyaBZHQKqvQO938oB1fZQoaAZoCWgPQwgZkL3e/dEMwJSGlFKUaBVLMmgWR0CqrsO0CzTndX2UKGgGaAloD0MI5EhnYOQFBcCUhpRSlGgVSzJoFkdAqq5ME3bVSXV9lChoBmgJaA9DCO1GH/MBwQTAlIaUUpRoFUsyaBZHQKqwv4yGi6B1fZQoaAZoCWgPQwifIoeIm1MGwJSGlFKUaBVLMmgWR0CqsEQxesxPdX2UKGgGaAloD0MIFto5zQJNBMCUhpRSlGgVSzJoFkdAqq/G0svqT3V9lChoBmgJaA9DCPLNNjem5wDAlIaUUpRoFUsyaBZHQKqvTx5s0pF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}