Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +287 -0
- config.json +26 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +49 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget:
|
11 |
+
- text: parking aeroport charles de gaulle carte
|
12 |
+
- text: achat académie dressage canin carte
|
13 |
+
- text: prlv sepa agence immobiliere commission vente
|
14 |
+
- text: facture carte toilettage beautydog nice carte
|
15 |
+
- text: facture carte du adobe creative cloud photo carte
|
16 |
+
pipeline_tag: text-classification
|
17 |
+
inference: true
|
18 |
+
model-index:
|
19 |
+
- name: SetFit
|
20 |
+
results:
|
21 |
+
- task:
|
22 |
+
type: text-classification
|
23 |
+
name: Text Classification
|
24 |
+
dataset:
|
25 |
+
name: Unknown
|
26 |
+
type: unknown
|
27 |
+
split: test
|
28 |
+
metrics:
|
29 |
+
- type: accuracy
|
30 |
+
value: 0.2727272727272727
|
31 |
+
name: Accuracy
|
32 |
+
---
|
33 |
+
|
34 |
+
# SetFit
|
35 |
+
|
36 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
37 |
+
|
38 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
39 |
+
|
40 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
41 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
### Model Description
|
46 |
+
- **Model Type:** SetFit
|
47 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
48 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
49 |
+
- **Maximum Sequence Length:** 128 tokens
|
50 |
+
- **Number of Classes:** 44 classes
|
51 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
52 |
+
<!-- - **Language:** Unknown -->
|
53 |
+
<!-- - **License:** Unknown -->
|
54 |
+
|
55 |
+
### Model Sources
|
56 |
+
|
57 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
58 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
59 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
60 |
+
|
61 |
+
### Model Labels
|
62 |
+
| Label | Examples |
|
63 |
+
|:-------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------|
|
64 |
+
| Shopping / electronics & multimedia | <ul><li>'paiement darty merignac carte'</li><li>'payement apple store carte carte usa usd commission'</li></ul> |
|
65 |
+
| Other / kids | <ul><li>'debit carte jeuxvideokidz com carte'</li><li>'achat carte magic cake anniversaire theo carte'</li></ul> |
|
66 |
+
| Bank services / other | <ul><li>'paiement frais opposition cheque carte'</li><li>'paiement frais demande rib iban supplémentaires carte'</li></ul> |
|
67 |
+
| Housing / rent | <ul><li>'prlv sepa studio centre ville lyon carte'</li><li>'prelevement loyer residence les cerisiers carte'</li></ul> |
|
68 |
+
| Transportation / other | <ul><li>'service assistance dépannage routier carte'</li><li>'parking aeroport charles de gaulle carte'</li></ul> |
|
69 |
+
| Bank services / transfers | <ul><li>'virement pour participation voyage scolaire sarah carte'</li><li>'virement sortant vers elodie dupont carte'</li></ul> |
|
70 |
+
| Investment / retirement & savings | <ul><li>'virement pee plan épargne entreprise carte'</li><li>'cotisation assurance vie caisse d epargne carte'</li></ul> |
|
71 |
+
| Other / taxes | <ul><li>'prelevement automatique taxe d amenagement'</li><li>'facture taxe sur les ordures menageres'</li></ul> |
|
72 |
+
| Healthy & Beauty / other | <ul><li>'abonnement trimestre club danse rythmo'</li><li>'cotisation annuelle association bien être soi'</li></ul> |
|
73 |
+
| Investment / securities | <ul><li>'investissement etf cac carte'</li><li>'transaction actions netflix carte usd'</li></ul> |
|
74 |
+
| Housing / other | <ul><li>'prlv sepa du alarmes securitas direct'</li><li>'facture carte du leroy merlin montigny carte'</li></ul> |
|
75 |
+
| Housing / house loan | <ul><li>'prlv credit immobilier ing direct echeance num'</li><li>'virement recu mensualite pret logis credit agricoche du'</li></ul> |
|
76 |
+
| Housing / utilities & bills | <ul><li>'prlv sepa orange france telecom'</li><li>'prlv sepa eau de paris'</li></ul> |
|
77 |
+
| Bank services / general fees | <ul><li>'frais operation non europeenne carte'</li><li>'frais renouvellement carte bancaire'</li></ul> |
|
78 |
+
| Leisure & Entertainment / culture & events | <ul><li>'prlv sepa cinema cgr lille'</li><li>'achat carte billet expo universselle carte'</li></ul> |
|
79 |
+
| Transportation / taxi & carpool | <ul><li>'facture carte du didi chengdu carte chn cny commission'</li><li>'facture carte du kakao taxi seoul carte kor krw commission'</li></ul> |
|
80 |
+
| Shopping / other | <ul><li>'achat arts et decoration bleneau carte'</li><li>'facture carte du boutique des artistes lyon carte'</li></ul> |
|
81 |
+
| Recurrent Payments / loans | <ul><li>'prlv recurrent banque postale pret perso carte'</li><li>'debit recurrent cic pret etudiant pretcicunive'</li></ul> |
|
82 |
+
| Healthy & Beauty / doctor fees | <ul><li>'prlv sepa centre medical les lilas frzzz cde wefr'</li><li>'prlv sepa centre chirurgical val d or frzzz cdc foeer'</li></ul> |
|
83 |
+
| Bank services / withdrawal | <ul><li>'retrait dab ecobanque lyon carte fr'</li><li>'retrait dab banqcentral montpellier carte fr'</li></ul> |
|
84 |
+
| Other / other | <ul><li>'paiement cotisation club d escalade les rocs'</li><li>'paiement en ligne site de don leucan'</li></ul> |
|
85 |
+
| Healthy & Beauty / pharmacy | <ul><li>'facture du pharmacie soleil levant carte'</li><li>'facture carte du pharmacie bellerose carte'</li></ul> |
|
86 |
+
| Transportation / fuel | <ul><li>'debit station petronas nice carte'</li><li>'transac carte du oil berlin carte ger'</li></ul> |
|
87 |
+
| Shopping / sporting goods | <ul><li>'facture carte patagonia grenoble carte'</li><li>'debit adidas running store nice carte'</li></ul> |
|
88 |
+
| Food & Drinks / groceries | <ul><li>'debit chocolaterie dulce carte'</li><li>'prlv sepa epicerie du sud carte'</li></ul> |
|
89 |
+
| Other / pets | <ul><li>'achat académie dressage canin carte'</li><li>'facture carte toilettage beautydog nice carte'</li></ul> |
|
90 |
+
| Investment / real estate | <ul><li>'loyers reçus locataire paris eme carte'</li><li>'prlv sepa agence immobiliere commission vente'</li></ul> |
|
91 |
+
| Shopping / clothing | <ul><li>'paiement carte du gucci opera paris carte'</li><li>'achat carte adidas originals store carte deu'</li></ul> |
|
92 |
+
| Shopping / housing equipment | <ul><li>'paiement par carte brico depot nice carte'</li><li>'achat chez tool co toulouse carte'</li></ul> |
|
93 |
+
| Transportation / maitenance | <ul><li>'facture carte du garage bonvolant poitiers carte'</li><li>'paiement carte du garage rénov clim reims carte'</li></ul> |
|
94 |
+
| Recurrent Payments / other | <ul><li>'prlv sepa soutien scolaire en ligne mathplus'</li><li>'prlv sepa club sportif maxiforme'</li></ul> |
|
95 |
+
| Recurrent Payments / insurance | <ul><li>'prlv sepa assurance emprunteur bnp paribas'</li><li>'prlv sepa assurance habitation axa'</li></ul> |
|
96 |
+
| Healthy & Beauty / veterinary | <ul><li>'debit soin du veto express marseille carte'</li><li>'vaccins chat clinique du parc toulouse carte'</li></ul> |
|
97 |
+
| Transportation / public transportation | <ul><li>'pass ferry corsica corsica linea carte'</li><li>'recharge navigo semaine ratp carte'</li></ul> |
|
98 |
+
| Healthy & Beauty / beauty & self-care | <ul><li>'facture carte du institut beaute pure carte'</li><li>'facture carte du coiffeur coupe chic carte'</li></ul> |
|
99 |
+
| Leisure & Entertainment / other | <ul><li>'abonnement mensuel canal carte'</li><li>'facture carte du spotify premium carte usa'</li></ul> |
|
100 |
+
| Food & Drinks / eating out | <ul><li>'facture carte du chez laurette lyon carte'</li><li>'facture carte du le gourmet vegan carte'</li></ul> |
|
101 |
+
| Housing / services & maintenance | <ul><li>'prlv sepa renovaction'</li><li>'facture carte du nettoyage professionnel sarl carte'</li></ul> |
|
102 |
+
| Leisure & Entertainment / travel | <ul><li>'facture carte du air france carte'</li><li>'virement sortant vacation savings for maldives frzzz date'</li></ul> |
|
103 |
+
| Leisure & Entertainment / sports & hobbies | <ul><li>'paiement en ligne du go sport paris carte'</li><li>'paiement en ligne du strava subscription carte usd'</li></ul> |
|
104 |
+
| Investment / other | <ul><li>'achat actions ia revolution carte'</li><li>'participation crowdfunding waterclean projet'</li></ul> |
|
105 |
+
| Transportation / car loan & leasing | <ul><li>'prelevement sepa creditauto favorisxcb carte'</li><li>'paiement mensualite volkswagen polo v loc vwpolo'</li></ul> |
|
106 |
+
| Recurrent Payments / subscription | <ul><li>'abonnement vpnsecure net carte'</li><li>'facture carte du adobe creative cloud photo carte'</li></ul> |
|
107 |
+
| Food & Drinks / other | <ul><li>'payment gourmet popcorn shop carte'</li><li>'achat du confiserie pierre carte'</li></ul> |
|
108 |
+
|
109 |
+
## Evaluation
|
110 |
+
|
111 |
+
### Metrics
|
112 |
+
| Label | Accuracy |
|
113 |
+
|:--------|:---------|
|
114 |
+
| **all** | 0.2727 |
|
115 |
+
|
116 |
+
## Uses
|
117 |
+
|
118 |
+
### Direct Use for Inference
|
119 |
+
|
120 |
+
First install the SetFit library:
|
121 |
+
|
122 |
+
```bash
|
123 |
+
pip install setfit
|
124 |
+
```
|
125 |
+
|
126 |
+
Then you can load this model and run inference.
|
127 |
+
|
128 |
+
```python
|
129 |
+
from setfit import SetFitModel
|
130 |
+
|
131 |
+
# Download from the 🤗 Hub
|
132 |
+
model = SetFitModel.from_pretrained("HEN10/setfit-particular-transaction-solon-embeddings-labels-large-kaggle-automatisation-v1")
|
133 |
+
# Run inference
|
134 |
+
preds = model("achat académie dressage canin carte")
|
135 |
+
```
|
136 |
+
|
137 |
+
<!--
|
138 |
+
### Downstream Use
|
139 |
+
|
140 |
+
*List how someone could finetune this model on their own dataset.*
|
141 |
+
-->
|
142 |
+
|
143 |
+
<!--
|
144 |
+
### Out-of-Scope Use
|
145 |
+
|
146 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
147 |
+
-->
|
148 |
+
|
149 |
+
<!--
|
150 |
+
## Bias, Risks and Limitations
|
151 |
+
|
152 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
153 |
+
-->
|
154 |
+
|
155 |
+
<!--
|
156 |
+
### Recommendations
|
157 |
+
|
158 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
159 |
+
-->
|
160 |
+
|
161 |
+
## Training Details
|
162 |
+
|
163 |
+
### Training Set Metrics
|
164 |
+
| Training set | Min | Median | Max |
|
165 |
+
|:-------------|:----|:-------|:----|
|
166 |
+
| Word count | 3 | 6.2045 | 10 |
|
167 |
+
|
168 |
+
| Label | Training Sample Count |
|
169 |
+
|:-------------------------------------------|:----------------------|
|
170 |
+
| Housing / rent | 2 |
|
171 |
+
| Housing / house loan | 2 |
|
172 |
+
| Housing / utilities & bills | 2 |
|
173 |
+
| Housing / services & maintenance | 2 |
|
174 |
+
| Housing / other | 2 |
|
175 |
+
| Food & Drinks / groceries | 2 |
|
176 |
+
| Food & Drinks / eating out | 2 |
|
177 |
+
| Food & Drinks / other | 2 |
|
178 |
+
| Leisure & Entertainment / sports & hobbies | 2 |
|
179 |
+
| Leisure & Entertainment / culture & events | 2 |
|
180 |
+
| Leisure & Entertainment / travel | 2 |
|
181 |
+
| Leisure & Entertainment / other | 2 |
|
182 |
+
| Transportation / car loan & leasing | 2 |
|
183 |
+
| Transportation / fuel | 2 |
|
184 |
+
| Transportation / public transportation | 2 |
|
185 |
+
| Transportation / taxi & carpool | 2 |
|
186 |
+
| Transportation / maitenance | 2 |
|
187 |
+
| Transportation / other | 2 |
|
188 |
+
| Recurrent Payments / loans | 2 |
|
189 |
+
| Recurrent Payments / insurance | 2 |
|
190 |
+
| Recurrent Payments / subscription | 2 |
|
191 |
+
| Recurrent Payments / other | 2 |
|
192 |
+
| Investment / securities | 2 |
|
193 |
+
| Investment / retirement & savings | 2 |
|
194 |
+
| Investment / real estate | 2 |
|
195 |
+
| Investment / other | 2 |
|
196 |
+
| Shopping / clothing | 2 |
|
197 |
+
| Shopping / electronics & multimedia | 2 |
|
198 |
+
| Shopping / sporting goods | 2 |
|
199 |
+
| Shopping / housing equipment | 2 |
|
200 |
+
| Shopping / other | 2 |
|
201 |
+
| Healthy & Beauty / doctor fees | 2 |
|
202 |
+
| Healthy & Beauty / pharmacy | 2 |
|
203 |
+
| Healthy & Beauty / beauty & self-care | 2 |
|
204 |
+
| Healthy & Beauty / veterinary | 2 |
|
205 |
+
| Healthy & Beauty / other | 2 |
|
206 |
+
| Bank services / transfers | 2 |
|
207 |
+
| Bank services / withdrawal | 2 |
|
208 |
+
| Bank services / general fees | 2 |
|
209 |
+
| Bank services / other | 2 |
|
210 |
+
| Other / taxes | 2 |
|
211 |
+
| Other / kids | 2 |
|
212 |
+
| Other / pets | 2 |
|
213 |
+
| Other / other | 2 |
|
214 |
+
|
215 |
+
### Training Hyperparameters
|
216 |
+
- batch_size: (16, 16)
|
217 |
+
- num_epochs: (1, 1)
|
218 |
+
- max_steps: -1
|
219 |
+
- sampling_strategy: oversampling
|
220 |
+
- body_learning_rate: (2e-05, 1e-05)
|
221 |
+
- head_learning_rate: 0.01
|
222 |
+
- loss: CosineSimilarityLoss
|
223 |
+
- distance_metric: cosine_distance
|
224 |
+
- margin: 0.25
|
225 |
+
- end_to_end: True
|
226 |
+
- use_amp: False
|
227 |
+
- warmup_proportion: 0.1
|
228 |
+
- seed: 6
|
229 |
+
- eval_max_steps: -1
|
230 |
+
- load_best_model_at_end: False
|
231 |
+
|
232 |
+
### Training Results
|
233 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
234 |
+
|:------:|:----:|:-------------:|:---------------:|
|
235 |
+
| 0.0021 | 1 | 0.1771 | - |
|
236 |
+
| 0.1057 | 50 | 0.1325 | - |
|
237 |
+
| 0.2114 | 100 | 0.1132 | - |
|
238 |
+
| 0.3171 | 150 | 0.0424 | - |
|
239 |
+
| 0.4228 | 200 | 0.0329 | - |
|
240 |
+
| 0.5285 | 250 | 0.0581 | - |
|
241 |
+
| 0.6342 | 300 | 0.0155 | - |
|
242 |
+
| 0.7400 | 350 | 0.0157 | - |
|
243 |
+
| 0.8457 | 400 | 0.0138 | - |
|
244 |
+
| 0.9514 | 450 | 0.0237 | - |
|
245 |
+
|
246 |
+
### Framework Versions
|
247 |
+
- Python: 3.10.13
|
248 |
+
- SetFit: 1.0.3
|
249 |
+
- Sentence Transformers: 2.6.1
|
250 |
+
- Transformers: 4.39.3
|
251 |
+
- PyTorch: 2.1.2
|
252 |
+
- Datasets: 2.17.0
|
253 |
+
- Tokenizers: 0.15.2
|
254 |
+
|
255 |
+
## Citation
|
256 |
+
|
257 |
+
### BibTeX
|
258 |
+
```bibtex
|
259 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
260 |
+
doi = {10.48550/ARXIV.2209.11055},
|
261 |
+
url = {https://arxiv.org/abs/2209.11055},
|
262 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
263 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
264 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
265 |
+
publisher = {arXiv},
|
266 |
+
year = {2022},
|
267 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
268 |
+
}
|
269 |
+
```
|
270 |
+
|
271 |
+
<!--
|
272 |
+
## Glossary
|
273 |
+
|
274 |
+
*Clearly define terms in order to be accessible across audiences.*
|
275 |
+
-->
|
276 |
+
|
277 |
+
<!--
|
278 |
+
## Model Card Authors
|
279 |
+
|
280 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
281 |
+
-->
|
282 |
+
|
283 |
+
<!--
|
284 |
+
## Model Card Contact
|
285 |
+
|
286 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
287 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.39.3",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"Housing / rent",
|
4 |
+
"Housing / house loan",
|
5 |
+
"Housing / utilities & bills",
|
6 |
+
"Housing / services & maintenance",
|
7 |
+
"Housing / other",
|
8 |
+
"Food & Drinks / groceries",
|
9 |
+
"Food & Drinks / eating out",
|
10 |
+
"Food & Drinks / other",
|
11 |
+
"Leisure & Entertainment / sports & hobbies",
|
12 |
+
"Leisure & Entertainment / culture & events",
|
13 |
+
"Leisure & Entertainment / travel",
|
14 |
+
"Leisure & Entertainment / other",
|
15 |
+
"Transportation / car loan & leasing",
|
16 |
+
"Transportation / fuel",
|
17 |
+
"Transportation / public transportation",
|
18 |
+
"Transportation / taxi & carpool",
|
19 |
+
"Transportation / maitenance",
|
20 |
+
"Transportation / other",
|
21 |
+
"Recurrent Payments / loans",
|
22 |
+
"Recurrent Payments / insurance",
|
23 |
+
"Recurrent Payments / subscription",
|
24 |
+
"Recurrent Payments / other",
|
25 |
+
"Investment / securities",
|
26 |
+
"Investment / retirement & savings",
|
27 |
+
"Investment / real estate",
|
28 |
+
"Investment / other",
|
29 |
+
"Shopping / clothing",
|
30 |
+
"Shopping / electronics & multimedia",
|
31 |
+
"Shopping / sporting goods",
|
32 |
+
"Shopping / housing equipment",
|
33 |
+
"Shopping / other",
|
34 |
+
"Healthy & Beauty / doctor fees",
|
35 |
+
"Healthy & Beauty / pharmacy",
|
36 |
+
"Healthy & Beauty / beauty & self-care",
|
37 |
+
"Healthy & Beauty / veterinary",
|
38 |
+
"Healthy & Beauty / other",
|
39 |
+
"Bank services / transfers",
|
40 |
+
"Bank services / withdrawal",
|
41 |
+
"Bank services / general fees",
|
42 |
+
"Bank services / other",
|
43 |
+
"Other / taxes",
|
44 |
+
"Other / kids",
|
45 |
+
"Other / pets",
|
46 |
+
"Other / other"
|
47 |
+
],
|
48 |
+
"normalize_embeddings": false
|
49 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cba0337f62767b2222a660264e985da6699410be37fe30922ae5fb7cf839ea2
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddd22af21c722aab92c548edd9f7988ccbc708d0a1e6fb2d01cc1f9613ca54de
|
3 |
+
size 143927
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|