File size: 6,013 Bytes
574a515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import numpy as np


class EncoderBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=(3, 3)):
        super(EncoderBlock, self).__init__()

        self.pool_size = 2

        self.conv_block = ConvBlock(in_channels, out_channels, kernel_size)

    def forward(self, x):
        latent = self.conv_block(x)
        output = F.avg_pool2d(latent, kernel_size=self.pool_size)
        return output, latent 

class DecoderBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=(3, 3)):
        super(DecoderBlock, self).__init__()

        stride = 2

        self.upsample = nn.ConvTranspose2d(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=stride,
            stride=stride,
            padding=(0, 0),
            bias=False,
        )

        self.conv_block = ConvBlock(in_channels * 2, out_channels, kernel_size)

    def forward(self, x, latent):
        x = self.upsample(x)
        x = torch.cat((x, latent), dim=1)
        output = self.conv_block(x)
        return output


class UNet(nn.Module):
    def __init__(self,freq_dim=1281,out_channel=1024):
        super(UNet, self).__init__()

        self.downsample_ratio = 16
        
 
        in_channels = 1 #self.audio_channels * self.cmplx_num

        self.encoder_block1 = EncoderBlock(in_channels, 16)
        self.encoder_block2 = EncoderBlock(16, 64)
        self.encoder_block3 = EncoderBlock(64, 256)
        self.encoder_block4 = EncoderBlock(256, 1024)
        self.middle = EncoderBlock(1024, 1024)
        self.decoder_block1 = DecoderBlock(1024, 256)
        self.decoder_block2 = DecoderBlock(256, 64)
        self.decoder_block3 = DecoderBlock(64, 16)
        self.decoder_block4 = DecoderBlock(16, 16)

        self.fc = nn.Linear(freq_dim*16, out_channel)

    def forward(self, x_ori):
        """
        Args:
            complex_sp: (batch_size, channels_num, time_steps, freq_bins),复数张量

        Returns:
            output: (batch_size, channels_num, time_steps, freq_bins),复数张量
        """

 
        x= self.process_image(x_ori)
        x1, latent1 = self.encoder_block1(x)
        x2, latent2 = self.encoder_block2(x1)
        x3, latent3 = self.encoder_block3(x2)
        x4, latent4 = self.encoder_block4(x3)
        _, h = self.middle(x4)
        x5 = self.decoder_block1(h, latent4)
        x6 = self.decoder_block2(x5, latent3)
        x7 = self.decoder_block3(x6, latent2)
        x8 = self.decoder_block4(x7, latent1)
        x= self.unprocess_image(x8,x_ori.shape[2])
        x = x.permute(0, 2, 1, 3).contiguous()  # 将形状变为 [6, 256, 16, 1024]
        x = x.view(x.size(0), x.size(1), -1) 
        x= self.fc(x)
 
        return x

    def process_image(self, x):
        """
        处理频谱以便可以被 downsample_ratio 整除。

        Args:
            x: (B, C, T, F)
        
        Returns:
            output: (B, C, T_padded, F_reduced)
        """

        B, C, T, Freq = x.shape

        pad_len = (
            int(np.ceil(T / self.downsample_ratio)) * self.downsample_ratio
            - T
        )
        x = F.pad(x, pad=(0, 0, 0, pad_len))

        output = x[:, :, :, 0 : Freq - 1]

        return output

    def unprocess_image(self, x,time_steps):
        """
        恢复频谱到原始形状。

        Args:
            x: (B, C, T_padded, F_reduced)
        
        Returns:
            output: (B, C, T_original, F_original)
        """
        x = F.pad(x, pad=(0, 1))

        output = x[:, :,0:time_steps, :]

        return output

class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=(3, 3)):
        super(ConvBlock, self).__init__()

        padding = [kernel_size[0] // 2, kernel_size[1] // 2]

        self.bn1 = nn.BatchNorm2d(in_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            padding=padding,
            bias=False,
        )

        self.conv2 = nn.Conv2d(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            padding=padding,
            bias=False,
        )

        if in_channels != out_channels:
            self.shortcut = nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=(1, 1),
                padding=(0, 0),
            )
            self.is_shortcut = True
        else:
            self.is_shortcut = False

    def forward(self, x):
        h = self.conv1(F.leaky_relu_(self.bn1(x)))
        h = self.conv2(F.leaky_relu_(self.bn2(h)))

        if self.is_shortcut:
            return self.shortcut(x) + h
        else:
            return x + h


def test_unet():
    # 定义输入参数
    batch_size = 6
    channels = 1  # 音频通道数
    time_steps = 256  # 时间步数
    freq_bins = 1024  # 频率 bins 数

    # 创建一个随机的复数张量作为输入
    real_part = torch.randn(batch_size, channels, time_steps, freq_bins)
    imag_part = torch.randn(batch_size, channels, time_steps, freq_bins)
    complex_sp = real_part #torch.complex(real_part, imag_part)

    # 实例化 UNet 模型
    model = UNet()

    # 前向传播
    output = model(complex_sp)

    # 输出输入和输出的形状
    print("输入形状:", complex_sp.shape)
    print("输出形状:", output.shape)

    # 检查输出是否为复数张量
    assert torch.is_complex(output), "输出不是复数张量"

    # 检查输出形状是否与输入形状一致
    assert output.shape == complex_sp.shape, "输出形状与输入形状不一致"

    print("测试通过,模型正常工作。")

# 运行测试函数
if __name__ == "__main__":
    test_unet()