|
import sys |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from vq.residual_vq import ResidualVQ |
|
from vq.module import WNConv1d, DecoderBlock, ResLSTM |
|
from vq.alias_free_torch import * |
|
from vq import activations |
|
import vq.blocks as blocks |
|
from torch.nn import utils |
|
|
|
from vq.bs_roformer5 import TransformerBlock |
|
|
|
from torchtune.modules import RotaryPositionalEmbeddings |
|
|
|
def init_weights(m): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
class CodecDecoder(nn.Module): |
|
def __init__(self, |
|
in_channels=1024, |
|
upsample_initial_channel=1536, |
|
ngf=48, |
|
use_rnn=True, |
|
rnn_bidirectional=False, |
|
rnn_num_layers=2, |
|
up_ratios=(5, 4, 4, 4, 2), |
|
dilations=(1, 3, 9), |
|
vq_num_quantizers=1, |
|
vq_dim=2048, |
|
vq_commit_weight=0.25, |
|
vq_weight_init=False, |
|
vq_full_commit_loss=False, |
|
codebook_size=16384, |
|
codebook_dim=32, |
|
): |
|
super().__init__() |
|
self.hop_length = np.prod(up_ratios) |
|
self.ngf = ngf |
|
self.up_ratios = up_ratios |
|
|
|
self.quantizer = ResidualVQ( |
|
num_quantizers=vq_num_quantizers, |
|
dim=vq_dim, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
threshold_ema_dead_code=2, |
|
commitment=vq_commit_weight, |
|
weight_init=vq_weight_init, |
|
full_commit_loss=vq_full_commit_loss, |
|
) |
|
channels = upsample_initial_channel |
|
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)] |
|
|
|
if use_rnn: |
|
layers += [ |
|
ResLSTM(channels, |
|
num_layers=rnn_num_layers, |
|
bidirectional=rnn_bidirectional |
|
) |
|
] |
|
|
|
for i, stride in enumerate(up_ratios): |
|
input_dim = channels // 2**i |
|
output_dim = channels // 2 ** (i + 1) |
|
layers += [DecoderBlock(input_dim, output_dim, stride, dilations)] |
|
|
|
layers += [ |
|
Activation1d(activation=activations.SnakeBeta(output_dim, alpha_logscale=True)), |
|
WNConv1d(output_dim, 1, kernel_size=7, padding=3), |
|
nn.Tanh(), |
|
] |
|
|
|
self.model = nn.Sequential(*layers) |
|
|
|
self.reset_parameters() |
|
|
|
def forward(self, x, vq=True): |
|
if vq is True: |
|
x, q, commit_loss = self.quantizer(x) |
|
return x, q, commit_loss |
|
x = self.model(x) |
|
return x |
|
|
|
def vq2emb(self, vq): |
|
self.quantizer = self.quantizer.eval() |
|
x = self.quantizer.vq2emb(vq) |
|
return x |
|
|
|
def get_emb(self): |
|
self.quantizer = self.quantizer.eval() |
|
embs = self.quantizer.get_emb() |
|
return embs |
|
|
|
def inference_vq(self, vq): |
|
x = vq[None,:,:] |
|
x = self.model(x) |
|
return x |
|
|
|
def inference_0(self, x): |
|
x, q, loss, perp = self.quantizer(x) |
|
x = self.model(x) |
|
return x, None |
|
|
|
def inference(self, x): |
|
x = self.model(x) |
|
return x, None |
|
|
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
|
|
def _remove_weight_norm(m): |
|
try: |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
|
|
def _apply_weight_norm(m): |
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): |
|
torch.nn.utils.weight_norm(m) |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
def reset_parameters(self): |
|
self.apply(init_weights) |
|
|
|
|
|
class CodecDecoder_oobleck_Transformer(nn.Module): |
|
def __init__(self, |
|
ngf=32, |
|
up_ratios=(5, 4, 4, 4, 2), |
|
dilations=(1, 3, 9), |
|
vq_num_quantizers=1, |
|
vq_dim=1024, |
|
vq_commit_weight=0.25, |
|
vq_weight_init=False, |
|
vq_full_commit_loss=False, |
|
codebook_size=16384, |
|
codebook_dim=16, |
|
hidden_dim=1024, |
|
depth=12, |
|
heads=16, |
|
pos_meb_dim=64, |
|
): |
|
super().__init__() |
|
self.hop_length = np.prod(up_ratios) |
|
self.capacity = ngf |
|
self.up_ratios = up_ratios |
|
self.hidden_dim = hidden_dim |
|
self.quantizer = ResidualVQ( |
|
num_quantizers=vq_num_quantizers, |
|
dim=vq_dim, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
threshold_ema_dead_code=2, |
|
commitment=vq_commit_weight, |
|
weight_init=vq_weight_init, |
|
full_commit_loss=vq_full_commit_loss, |
|
) |
|
|
|
time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim) |
|
|
|
transformer_blocks = [ |
|
TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed) |
|
for _ in range(depth) |
|
] |
|
|
|
self.transformers = nn.Sequential(*transformer_blocks) |
|
|
|
self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6) |
|
|
|
self.conv_blocks = blocks.DilatedResidualDecoder( |
|
capacity=self.capacity, |
|
dilated_unit=self.dilated_unit, |
|
upsampling_unit=self.upsampling_unit, |
|
ratios=up_ratios, |
|
dilations=dilations, |
|
pre_network_conv=self.pre_conv, |
|
post_network_conv=self.post_conv, |
|
) |
|
|
|
|
|
|
|
self.reset_parameters() |
|
|
|
def forward(self, x, vq=True): |
|
if vq is True: |
|
x, q, commit_loss = self.quantizer(x) |
|
return x, q, commit_loss |
|
x= self.transformers(x) |
|
x = self.final_layer_norm(x) |
|
x = x.permute(0, 2, 1) |
|
x = self.conv_blocks(x) |
|
return x |
|
|
|
def vq2emb(self, vq): |
|
self.quantizer = self.quantizer.eval() |
|
x = self.quantizer.vq2emb(vq) |
|
return x |
|
|
|
def get_emb(self): |
|
self.quantizer = self.quantizer.eval() |
|
embs = self.quantizer.get_emb() |
|
return embs |
|
|
|
def inference_vq(self, vq): |
|
x = vq[None,:,:] |
|
x = self.model(x) |
|
return x |
|
|
|
def inference_0(self, x): |
|
x, q, loss, perp = self.quantizer(x) |
|
x = self.model(x) |
|
return x, None |
|
|
|
def inference(self, x): |
|
x = self.model(x) |
|
return x, None |
|
|
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
|
|
def _remove_weight_norm(m): |
|
try: |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
|
|
def _apply_weight_norm(m): |
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): |
|
torch.nn.utils.weight_norm(m) |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
def reset_parameters(self): |
|
self.apply(init_weights) |
|
|
|
def pre_conv(self, out_channels): |
|
return nn.Conv1d(in_channels=self.hidden_dim, out_channels=out_channels, kernel_size=1) |
|
|
|
|
|
def post_conv(self,in_channels): |
|
return nn.Conv1d(in_channels=in_channels, out_channels=1, kernel_size=1) |
|
|
|
def dilated_unit(self, hidden_dim, dilation): |
|
return blocks.DilatedConvolutionalUnit( |
|
hidden_dim=hidden_dim, |
|
dilation=dilation, |
|
kernel_size=3, |
|
activation=nn.ReLU , |
|
normalization=utils.weight_norm |
|
) |
|
|
|
|
|
def upsampling_unit(self,input_dim, output_dim, stride): |
|
return blocks.UpsamplingUnit( |
|
input_dim=input_dim, |
|
output_dim=output_dim, |
|
stride=stride, |
|
activation=nn.ReLU , |
|
normalization=utils.weight_norm |
|
) |
|
|
|
def main(): |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
print(f"Using device: {device}") |
|
|
|
|
|
model = CodecDecoder_oobleck_Transformer().to(device) |
|
print("Model initialized.") |
|
|
|
|
|
batch_size = 2 |
|
in_channels = 1024 |
|
sequence_length = 100 |
|
dummy_input = torch.randn(batch_size, sequence_length, in_channels).to(device) |
|
print(f"Dummy input shape: {dummy_input.shape}") |
|
|
|
|
|
model.eval() |
|
|
|
|
|
|
|
output_no_vq = model(dummy_input, vq=False) |
|
c=1 |
|
|
|
if __name__ == "__main__": |
|
main() |