|
import torch.nn as nn |
|
from einops import rearrange |
|
from . import activations |
|
from .alias_free_torch import * |
|
from torch.nn.utils import weight_norm |
|
|
|
from typing import Optional, Tuple |
|
|
|
from torch.nn.utils import weight_norm, remove_weight_norm |
|
|
|
|
|
def WNConv1d(*args, **kwargs): |
|
return weight_norm(nn.Conv1d(*args, **kwargs)) |
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs): |
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) |
|
|
|
class ResidualUnit(nn.Module): |
|
def __init__(self, dim: int = 16, dilation: int = 1): |
|
super().__init__() |
|
pad = ((7 - 1) * dilation) // 2 |
|
self.block = nn.Sequential( |
|
Activation1d(activation=activations.SnakeBeta(dim, alpha_logscale=True)), |
|
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), |
|
Activation1d(activation=activations.SnakeBeta(dim, alpha_logscale=True)), |
|
WNConv1d(dim, dim, kernel_size=1), |
|
) |
|
|
|
def forward(self, x): |
|
return x + self.block(x) |
|
|
|
class EncoderBlock(nn.Module): |
|
def __init__(self, dim: int = 16, stride: int = 1, dilations = (1, 3, 9)): |
|
super().__init__() |
|
runits = [ResidualUnit(dim // 2, dilation=d) for d in dilations] |
|
self.block = nn.Sequential( |
|
*runits, |
|
Activation1d(activation=activations.SnakeBeta(dim//2, alpha_logscale=True)), |
|
WNConv1d( |
|
dim // 2, |
|
dim, |
|
kernel_size=2 * stride, |
|
stride=stride, |
|
padding=stride // 2 + stride % 2, |
|
), |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1, dilations = (1, 3, 9)): |
|
super().__init__() |
|
self.block = nn.Sequential( |
|
Activation1d(activation=activations.SnakeBeta(input_dim, alpha_logscale=True)), |
|
WNConvTranspose1d( |
|
input_dim, |
|
output_dim, |
|
kernel_size=2 * stride, |
|
stride=stride, |
|
padding=stride // 2 + stride % 2, |
|
output_padding= stride % 2, |
|
) |
|
) |
|
self.block.extend([ResidualUnit(output_dim, dilation=d) for d in dilations]) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
class ResLSTM(nn.Module): |
|
def __init__(self, dimension: int, |
|
num_layers: int = 2, |
|
bidirectional: bool = False, |
|
skip: bool = True): |
|
super().__init__() |
|
self.skip = skip |
|
self.lstm = nn.LSTM(dimension, dimension if not bidirectional else dimension // 2, |
|
num_layers, batch_first=True, |
|
bidirectional=bidirectional) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x: [B, F, T] |
|
|
|
Returns: |
|
y: [B, F, T] |
|
""" |
|
x = rearrange(x, "b f t -> b t f") |
|
y, _ = self.lstm(x) |
|
if self.skip: |
|
y = y + x |
|
y = rearrange(y, "b t f -> b f t") |
|
return y |
|
|
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
intermediate_dim (int): Dimensionality of the intermediate layer. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional LayerNorm. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
intermediate_dim: int, |
|
layer_scale_init_value: float, |
|
adanorm_num_embeddings: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) |
|
self.adanorm = adanorm_num_embeddings is not None |
|
if adanorm_num_embeddings: |
|
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) |
|
else: |
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, intermediate_dim) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(intermediate_dim, dim) |
|
self.gamma = ( |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) |
|
if layer_scale_init_value > 0 |
|
else None |
|
) |
|
|
|
def forward(self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
residual = x |
|
x = self.dwconv(x) |
|
x = x.transpose(1, 2) |
|
if self.adanorm: |
|
assert cond_embedding_id is not None |
|
x = self.norm(x, cond_embedding_id) |
|
else: |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.transpose(1, 2) |
|
|
|
x = residual + x |
|
return x |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes |
|
|
|
Args: |
|
num_embeddings (int): Number of embeddings. |
|
embedding_dim (int): Dimension of the embeddings. |
|
""" |
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.dim = embedding_dim |
|
self.scale = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim) |
|
self.shift = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim) |
|
torch.nn.init.ones_(self.scale.weight) |
|
torch.nn.init.zeros_(self.shift.weight) |
|
|
|
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor: |
|
scale = self.scale(cond_embedding_id) |
|
shift = self.shift(cond_embedding_id) |
|
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) |
|
x = x * scale + shift |
|
return x |
|
|
|
|
|
class ResBlock1(nn.Module): |
|
""" |
|
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, |
|
but without upsampling layers. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. |
|
dilation (tuple[int], optional): Dilation factors for the dilated convolutions. |
|
Defaults to (1, 3, 5). |
|
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. |
|
Defaults to 0.1. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
kernel_size: int = 3, |
|
dilation: Tuple[int, int, int] = (1, 3, 5), |
|
lrelu_slope: float = 0.1, |
|
layer_scale_init_value: Optional[float] = None, |
|
): |
|
super().__init__() |
|
self.lrelu_slope = lrelu_slope |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=self.get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=self.get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=self.get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))), |
|
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))), |
|
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))), |
|
] |
|
) |
|
|
|
self.gamma = nn.ParameterList( |
|
[ |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True) |
|
if layer_scale_init_value is not None |
|
else None, |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True) |
|
if layer_scale_init_value is not None |
|
else None, |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True) |
|
if layer_scale_init_value is not None |
|
else None, |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): |
|
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) |
|
xt = c1(xt) |
|
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) |
|
xt = c2(xt) |
|
if gamma is not None: |
|
xt = gamma * xt |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
@staticmethod |
|
def get_padding(kernel_size: int, dilation: int = 1) -> int: |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor: |
|
""" |
|
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values. |
|
|
|
Args: |
|
x (Tensor): Input tensor. |
|
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7. |
|
|
|
Returns: |
|
Tensor: Element-wise logarithm of the input tensor with clipping applied. |
|
""" |
|
return torch.log(torch.clip(x, min=clip_val)) |
|
|
|
|
|
def symlog(x: torch.Tensor) -> torch.Tensor: |
|
return torch.sign(x) * torch.log1p(x.abs()) |
|
|
|
|
|
def symexp(x: torch.Tensor) -> torch.Tensor: |
|
return torch.sign(x) * (torch.exp(x.abs()) - 1) |
|
|
|
|
|
|
|
class SemanticEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
input_channels: int, |
|
code_dim: int, |
|
encode_channels: int, |
|
kernel_size: int = 3, |
|
bias: bool = True, |
|
): |
|
super(SemanticEncoder, self).__init__() |
|
|
|
|
|
self.initial_conv = nn.Conv1d( |
|
in_channels=input_channels, |
|
out_channels=encode_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
bias=False |
|
) |
|
|
|
|
|
self.residual_blocks = nn.Sequential( |
|
nn.ReLU(inplace=True), |
|
nn.Conv1d( |
|
encode_channels, |
|
encode_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
bias=bias |
|
), |
|
nn.ReLU(inplace=True), |
|
nn.Conv1d( |
|
encode_channels, |
|
encode_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
bias=bias |
|
) |
|
) |
|
|
|
|
|
self.final_conv = nn.Conv1d( |
|
in_channels=encode_channels, |
|
out_channels=code_dim, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
bias=False |
|
) |
|
|
|
def forward(self, x): |
|
""" |
|
前向传播方法。 |
|
|
|
Args: |
|
x (Tensor): 输入张量,形状为 (Batch, Input_channels, Length) |
|
|
|
Returns: |
|
Tensor: 编码后的张量,形状为 (Batch, Code_dim, Length) |
|
""" |
|
x = self.initial_conv(x) |
|
x = self.residual_blocks(x) + x |
|
x = self.final_conv(x) |
|
return x |
|
|
|
class SemanticDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
code_dim: int, |
|
output_channels: int, |
|
decode_channels: int, |
|
kernel_size: int = 3, |
|
bias: bool = True, |
|
): |
|
super(SemanticDecoder, self).__init__() |
|
|
|
|
|
self.initial_conv = nn.Conv1d( |
|
in_channels=code_dim, |
|
out_channels=decode_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
bias=False |
|
) |
|
|
|
|
|
self.residual_blocks = nn.Sequential( |
|
nn.ReLU(inplace=True), |
|
nn.Conv1d(decode_channels, decode_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias), |
|
nn.ReLU(inplace=True), |
|
nn.Conv1d(decode_channels, decode_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias) |
|
) |
|
|
|
|
|
self.final_conv = nn.Conv1d( |
|
in_channels=decode_channels, |
|
out_channels=output_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
bias=False |
|
) |
|
|
|
def forward(self, z): |
|
|
|
x = self.initial_conv(z) |
|
x = self.residual_blocks(x) + x |
|
x = self.final_conv(x) |
|
return x |