|
import math
|
|
import torch
|
|
from torch import nn
|
|
from .factorized_vector_quantize import FactorizedVectorQuantize
|
|
|
|
class ResidualVQ(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
num_quantizers,
|
|
codebook_size,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
VQ = FactorizedVectorQuantize
|
|
if type(codebook_size) == int:
|
|
codebook_size = [codebook_size] * num_quantizers
|
|
self.layers = nn.ModuleList([VQ(codebook_size=size, **kwargs) for size in codebook_size])
|
|
self.num_quantizers = num_quantizers
|
|
|
|
def forward(self, x):
|
|
quantized_out = 0.
|
|
residual = x
|
|
|
|
all_losses = []
|
|
all_indices = []
|
|
|
|
for idx, layer in enumerate(self.layers):
|
|
quantized, indices, loss = layer(residual)
|
|
|
|
residual = residual - quantized
|
|
|
|
quantized_out = quantized_out + quantized
|
|
|
|
loss = loss.mean()
|
|
|
|
all_indices.append(indices)
|
|
all_losses.append(loss)
|
|
all_losses, all_indices = map(torch.stack, (all_losses, all_indices))
|
|
return quantized_out, all_indices, all_losses
|
|
|
|
def vq2emb(self, vq, proj=True):
|
|
|
|
quantized_out = 0.
|
|
for idx, layer in enumerate(self.layers):
|
|
quantized = layer.vq2emb(vq[:, :, idx], proj=proj)
|
|
quantized_out = quantized_out + quantized
|
|
return quantized_out
|
|
def get_emb(self):
|
|
embs = []
|
|
for idx, layer in enumerate(self.layers):
|
|
embs.append(layer.get_emb())
|
|
return embs
|
|
|