|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
import numpy as np |
|
|
|
|
|
class EncoderBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size=(3, 3)): |
|
super(EncoderBlock, self).__init__() |
|
|
|
self.pool_size = 2 |
|
|
|
self.conv_block = ConvBlock(in_channels, out_channels, kernel_size) |
|
|
|
def forward(self, x): |
|
latent = self.conv_block(x) |
|
output = F.avg_pool2d(latent, kernel_size=self.pool_size) |
|
return output, latent |
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size=(3, 3)): |
|
super(DecoderBlock, self).__init__() |
|
|
|
stride = 2 |
|
|
|
self.upsample = nn.ConvTranspose2d( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=stride, |
|
stride=stride, |
|
padding=(0, 0), |
|
bias=False, |
|
) |
|
|
|
self.conv_block = ConvBlock(in_channels * 2, out_channels, kernel_size) |
|
|
|
def forward(self, x, latent): |
|
x = self.upsample(x) |
|
x = torch.cat((x, latent), dim=1) |
|
output = self.conv_block(x) |
|
return output |
|
|
|
|
|
class UNet(nn.Module): |
|
def __init__(self,freq_dim=1281,out_channel=1024): |
|
super(UNet, self).__init__() |
|
|
|
self.downsample_ratio = 16 |
|
|
|
|
|
in_channels = 1 |
|
|
|
self.encoder_block1 = EncoderBlock(in_channels, 16) |
|
self.encoder_block2 = EncoderBlock(16, 64) |
|
self.encoder_block3 = EncoderBlock(64, 256) |
|
self.encoder_block4 = EncoderBlock(256, 1024) |
|
self.middle = EncoderBlock(1024, 1024) |
|
self.decoder_block1 = DecoderBlock(1024, 256) |
|
self.decoder_block2 = DecoderBlock(256, 64) |
|
self.decoder_block3 = DecoderBlock(64, 16) |
|
self.decoder_block4 = DecoderBlock(16, 16) |
|
|
|
self.fc = nn.Linear(freq_dim*16, out_channel) |
|
|
|
def forward(self, x_ori): |
|
""" |
|
Args: |
|
complex_sp: (batch_size, channels_num, time_steps, freq_bins),复数张量 |
|
|
|
Returns: |
|
output: (batch_size, channels_num, time_steps, freq_bins),复数张量 |
|
""" |
|
|
|
|
|
x= self.process_image(x_ori) |
|
x1, latent1 = self.encoder_block1(x) |
|
x2, latent2 = self.encoder_block2(x1) |
|
x3, latent3 = self.encoder_block3(x2) |
|
x4, latent4 = self.encoder_block4(x3) |
|
_, h = self.middle(x4) |
|
x5 = self.decoder_block1(h, latent4) |
|
x6 = self.decoder_block2(x5, latent3) |
|
x7 = self.decoder_block3(x6, latent2) |
|
x8 = self.decoder_block4(x7, latent1) |
|
x= self.unprocess_image(x8,x_ori.shape[2]) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
x = x.view(x.size(0), x.size(1), -1) |
|
x= self.fc(x) |
|
|
|
return x |
|
|
|
def process_image(self, x): |
|
""" |
|
处理频谱以便可以被 downsample_ratio 整除。 |
|
|
|
Args: |
|
x: (B, C, T, F) |
|
|
|
Returns: |
|
output: (B, C, T_padded, F_reduced) |
|
""" |
|
|
|
B, C, T, Freq = x.shape |
|
|
|
pad_len = ( |
|
int(np.ceil(T / self.downsample_ratio)) * self.downsample_ratio |
|
- T |
|
) |
|
x = F.pad(x, pad=(0, 0, 0, pad_len)) |
|
|
|
output = x[:, :, :, 0 : Freq - 1] |
|
|
|
return output |
|
|
|
def unprocess_image(self, x,time_steps): |
|
""" |
|
恢复频谱到原始形状。 |
|
|
|
Args: |
|
x: (B, C, T_padded, F_reduced) |
|
|
|
Returns: |
|
output: (B, C, T_original, F_original) |
|
""" |
|
x = F.pad(x, pad=(0, 1)) |
|
|
|
output = x[:, :,0:time_steps, :] |
|
|
|
return output |
|
|
|
class ConvBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size=(3, 3)): |
|
super(ConvBlock, self).__init__() |
|
|
|
padding = [kernel_size[0] // 2, kernel_size[1] // 2] |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
|
|
self.conv1 = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
bias=False, |
|
) |
|
|
|
self.conv2 = nn.Conv2d( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
bias=False, |
|
) |
|
|
|
if in_channels != out_channels: |
|
self.shortcut = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=(1, 1), |
|
padding=(0, 0), |
|
) |
|
self.is_shortcut = True |
|
else: |
|
self.is_shortcut = False |
|
|
|
def forward(self, x): |
|
h = self.conv1(F.leaky_relu_(self.bn1(x))) |
|
h = self.conv2(F.leaky_relu_(self.bn2(h))) |
|
|
|
if self.is_shortcut: |
|
return self.shortcut(x) + h |
|
else: |
|
return x + h |
|
|
|
|
|
def test_unet(): |
|
|
|
batch_size = 6 |
|
channels = 1 |
|
time_steps = 256 |
|
freq_bins = 1024 |
|
|
|
|
|
real_part = torch.randn(batch_size, channels, time_steps, freq_bins) |
|
imag_part = torch.randn(batch_size, channels, time_steps, freq_bins) |
|
complex_sp = real_part |
|
|
|
|
|
model = UNet() |
|
|
|
|
|
output = model(complex_sp) |
|
|
|
|
|
print("输入形状:", complex_sp.shape) |
|
print("输出形状:", output.shape) |
|
|
|
|
|
assert torch.is_complex(output), "输出不是复数张量" |
|
|
|
|
|
assert output.shape == complex_sp.shape, "输出形状与输入形状不一致" |
|
|
|
print("测试通过,模型正常工作。") |
|
|
|
|
|
if __name__ == "__main__": |
|
test_unet() |