import sys sys.path.append('/aifs4su/data/zheny/bigcodec_final/BigCodec_conv_transformer_vocos') import numpy as np import torch import torch.nn as nn from vq.residual_vq import ResidualVQ from vq.module import WNConv1d, DecoderBlock, ResLSTM from vq.alias_free_torch import * from vq import activations from typing import Optional from vq.module import ConvNeXtBlock, AdaLayerNorm from vq.bs_roformer5 import TransformerBlock # from rotary_embedding_torch import RotaryEmbedding from torchtune.modules import RotaryPositionalEmbeddings from vector_quantize_pytorch import ResidualFSQ from torch.nn import Module, ModuleList class ISTFT(nn.Module): """ Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges. See issue: https://github.com/pytorch/pytorch/issues/62323 Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs. The NOLA constraint is met as we trim padded samples anyway. Args: n_fft (int): Size of Fourier transform. hop_length (int): The distance between neighboring sliding window frames. win_length (int): The size of window frame and STFT filter. padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". """ def __init__(self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"): super().__init__() if padding not in ["center", "same"]: raise ValueError("Padding must be 'center' or 'same'.") self.padding = padding self.n_fft = n_fft self.hop_length = hop_length self.win_length = win_length window = torch.hann_window(win_length) self.register_buffer("window", window) def forward(self, spec: torch.Tensor) -> torch.Tensor: """ Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram. Args: spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size, N is the number of frequency bins, and T is the number of time frames. Returns: Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal. """ if self.padding == "center": # Fallback to pytorch native implementation return torch.istft(spec, self.n_fft, self.hop_length, self.win_length, self.window, center=True) elif self.padding == "same": pad = (self.win_length - self.hop_length) // 2 else: raise ValueError("Padding must be 'center' or 'same'.") assert spec.dim() == 3, "Expected a 3D tensor as input" B, N, T = spec.shape # Inverse FFT ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") ifft = ifft * self.window[None, :, None] # Overlap and Add output_size = (T - 1) * self.hop_length + self.win_length y = torch.nn.functional.fold( ifft, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), )[:, 0, 0, pad:-pad] # Window envelope window_sq = self.window.square().expand(1, T, -1).transpose(1, 2) window_envelope = torch.nn.functional.fold( window_sq, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), ).squeeze()[pad:-pad] # Normalize assert (window_envelope > 1e-11).all() y = y / window_envelope return y class FourierHead(nn.Module): """Base class for inverse fourier modules.""" def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, L is the sequence length, and H denotes the model dimension. Returns: Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. """ raise NotImplementedError("Subclasses must implement the forward method.") class ISTFTHead(FourierHead): """ ISTFT Head module for predicting STFT complex coefficients. Args: dim (int): Hidden dimension of the model. n_fft (int): Size of Fourier transform. hop_length (int): The distance between neighboring sliding window frames, which should align with the resolution of the input features. padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". """ def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"): super().__init__() out_dim = n_fft + 2 self.out = torch.nn.Linear(dim, out_dim) self.istft = ISTFT(n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass of the ISTFTHead module. Args: x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, L is the sequence length, and H denotes the model dimension. Returns: Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. """ x_pred = self.out(x ) # x_pred = x x_pred = x_pred.transpose(1, 2) mag, p = x_pred.chunk(2, dim=1) mag = torch.exp(mag) mag = torch.clip(mag, max=1e2) # safeguard to prevent excessively large magnitudes # wrapping happens here. These two lines produce real and imaginary value x = torch.cos(p) y = torch.sin(p) # recalculating phase here does not produce anything new # only costs time # phase = torch.atan2(y, x) # S = mag * torch.exp(phase * 1j) # better directly produce the complex value S = mag * (x + 1j * y) audio = self.istft(S) return audio.unsqueeze(1),x_pred def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb=None): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h = q.shape q = q.permute(0, 2, 1) # b,hw,c w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = self.proj_out(h_) return x + h_ def make_attn(in_channels, attn_type="vanilla"): assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown' print(f"making attention of type '{attn_type}' with {in_channels} in_channels") if attn_type == "vanilla": return AttnBlock(in_channels) class Backbone(nn.Module): """Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: """ Args: x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, C denotes output features, and L is the sequence length. Returns: Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, and H denotes the model dimension. """ raise NotImplementedError("Subclasses must implement the forward method.") class VocosBackbone(Backbone): """ Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization Args: input_channels (int): Number of input features channels. dim (int): Hidden dimension of the model. intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. num_layers (int): Number of ConvNeXtBlock layers. layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. None means non-conditional model. Defaults to None. """ def __init__( self, hidden_dim=1024,depth=12,heads=16,pos_meb_dim=64): super().__init__() self.embed = nn.Conv1d(hidden_dim, hidden_dim, kernel_size=7, padding=3) self.temb_ch = 0 block_in = hidden_dim dropout = 0.1 prior_net : tp.List[nn.Module] = [ ResnetBlock(in_channels=block_in,out_channels=block_in, temb_channels=self.temb_ch,dropout=dropout), ResnetBlock(in_channels=block_in,out_channels=block_in, temb_channels=self.temb_ch,dropout=dropout), ] self.prior_net = nn.Sequential(*prior_net) depth = depth time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim) transformer_blocks = [ TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed) for _ in range(depth) ] self.transformers = nn.Sequential(*transformer_blocks) self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6) post_net : tp.List[nn.Module] = [ ResnetBlock(in_channels=block_in,out_channels=block_in, temb_channels=self.temb_ch,dropout=dropout), ResnetBlock(in_channels=block_in,out_channels=block_in, temb_channels=self.temb_ch,dropout=dropout), ] self.post_net = nn.Sequential(*post_net) def forward(self, x: torch.Tensor ) -> torch.Tensor: x = x.transpose(1, 2) x = self.embed(x) x = self.prior_net(x) x = x.transpose(1, 2) x= self.transformers(x) x = x.transpose(1, 2) x = self.post_net(x) x = x.transpose(1, 2) x = self.final_layer_norm(x) return x def init_weights(m): if isinstance(m, nn.Conv1d): nn.init.trunc_normal_(m.weight, std=0.02) nn.init.constant_(m.bias, 0) class CodecDecoderVocos(nn.Module): def __init__(self, hidden_dim=1024, depth=12, heads=16, pos_meb_dim=64, hop_length=320, vq_num_quantizers=1, vq_dim=2048, #1024 2048 vq_commit_weight=0.25, vq_weight_init=False, vq_full_commit_loss=False, codebook_size=16384, codebook_dim=16, ): super().__init__() self.hop_length = hop_length self.quantizer = ResidualFSQ( dim = vq_dim, levels = [4, 4, 4, 4, 4,4,4,4], num_quantizers = 1 ) # self.quantizer = ResidualVQ( # num_quantizers=vq_num_quantizers, # dim=vq_dim, # codebook_size=codebook_size, # codebook_dim=codebook_dim, # threshold_ema_dead_code=2, # commitment=vq_commit_weight, # weight_init=vq_weight_init, # full_commit_loss=vq_full_commit_loss, # ) self.backbone = VocosBackbone( hidden_dim=hidden_dim,depth=depth,heads=heads,pos_meb_dim=pos_meb_dim) self.head = ISTFTHead(dim=hidden_dim, n_fft=self.hop_length*4, hop_length=self.hop_length, padding="same") self.reset_parameters() def forward(self, x, vq=True): if vq is True: # x, q, commit_loss = self.quantizer(x) x = x.permute(0, 2, 1) x, q = self.quantizer(x) x = x.permute(0, 2, 1) q = q.permute(0, 2, 1) return x, q, None x = self.backbone(x) x,_ = self.head(x) return x ,_ def vq2emb(self, vq): self.quantizer = self.quantizer.eval() x = self.quantizer.vq2emb(vq) return x def get_emb(self): self.quantizer = self.quantizer.eval() embs = self.quantizer.get_emb() return embs def inference_vq(self, vq): x = vq[None,:,:] x = self.model(x) return x def inference_0(self, x): x, q, loss, perp = self.quantizer(x) x = self.model(x) return x, None def inference(self, x): x = self.model(x) return x, None def remove_weight_norm(self): """Remove weight normalization module from all of the layers.""" def _remove_weight_norm(m): try: torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(_remove_weight_norm) def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m): if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): torch.nn.utils.weight_norm(m) self.apply(_apply_weight_norm) def reset_parameters(self): self.apply(init_weights) class CodecDecoderVocos_transpose(nn.Module): def __init__(self, hidden_dim=1024, depth=12, heads=16, pos_meb_dim=64, hop_length=320, vq_num_quantizers=1, vq_dim=1024, #1024 2048 vq_commit_weight=0.25, vq_weight_init=False, vq_full_commit_loss=False, codebook_size=16384, codebook_dim=16, ): super().__init__() self.hop_length = hop_length self.quantizer = ResidualVQ( num_quantizers=vq_num_quantizers, dim=vq_dim, codebook_size=codebook_size, codebook_dim=codebook_dim, threshold_ema_dead_code=2, commitment=vq_commit_weight, weight_init=vq_weight_init, full_commit_loss=vq_full_commit_loss, ) self.backbone = VocosBackbone( hidden_dim=hidden_dim,depth=depth,heads=heads,pos_meb_dim=pos_meb_dim) self.inverse_mel_conv = nn.Sequential( nn.GELU(), nn.ConvTranspose1d( in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, stride=2, padding=1, output_padding=1 # 确保输出长度与编码前匹配 ), nn.GELU(), nn.ConvTranspose1d( in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, padding=1 ) ) self.head = ISTFTHead(dim=hidden_dim, n_fft=self.hop_length*4, hop_length=self.hop_length, padding="same") self.reset_parameters() def forward(self, x, vq=True): if vq is True: x, q, commit_loss = self.quantizer(x) return x, q, commit_loss x = self.backbone(x) x,_ = self.head(x) return x ,_ def vq2emb(self, vq): self.quantizer = self.quantizer.eval() x = self.quantizer.vq2emb(vq) return x def get_emb(self): self.quantizer = self.quantizer.eval() embs = self.quantizer.get_emb() return embs def inference_vq(self, vq): x = vq[None,:,:] x = self.model(x) return x def inference_0(self, x): x, q, loss, perp = self.quantizer(x) x = self.model(x) return x, None def inference(self, x): x = self.model(x) return x, None def remove_weight_norm(self): """Remove weight normalization module from all of the layers.""" def _remove_weight_norm(m): try: torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(_remove_weight_norm) def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m): if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): torch.nn.utils.weight_norm(m) self.apply(_apply_weight_norm) def reset_parameters(self): self.apply(init_weights) def main(): # 设置设备 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") # 初始化模型 model = CodecDecoderVocos_transpose().to(device) print("Model initialized.") # 创建测试输入: batch_size x in_channels x sequence_length batch_size = 2 in_channels = 1024 sequence_length = 50 # 示例长度,可以根据需要调整 dummy_input = torch.randn(batch_size, in_channels, sequence_length).to(device) print(f"Dummy input shape: {dummy_input.shape}") # 将模型设为评估模式 model.eval() # 前向传播(使用 VQ) # with torch.no_grad(): # try: # output, q, commit_loss = model(dummy_input, vq=True) # print("Forward pass with VQ:") # print(f"Output shape: {output.shape}") # print(f"Quantized codes shape: {q.shape}") # print(f"Commitment loss: {commit_loss}") # except Exception as e: # print(f"Error during forward pass with VQ: {e}") # 前向传播(不使用 VQ) with torch.no_grad(): # try: output_no_vq = model(dummy_input, vq=False) print("\nForward pass without VQ:") print(f"Output shape: {output_no_vq.shape}") c=1 # except Exception as e: # print(f"Error during forward pass without VQ: {e}") # model_size_bytes = sum(p.numel() * p.element_size() for p in model.parameters()) # model_size_mb = model_size_bytes / (1024 ** 2) # print(f"Model size: {model_size_bytes} bytes ({model_size_mb:.2f} MB)") if __name__ == "__main__": main()