File size: 10,621 Bytes
9362ec8 483beb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
---
license: cc-by-nc-4.0
datasets:
- argilla/dpo-mix-7k
- nvidia/HelpSteer
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- biology
- medical
---
# Aloe: A New Family of Healthcare LLMs
Aloe is a new family of healthcare LLMs that is highly competitive with all previous open models of its range and reaches state-of-the-art results at its size by using model merging and advanced prompting strategies. Aloe scores high in metrics measuring ethics and factuality, thanks to a combined red teaming and alignment effort. Complete training details, model merging configurations, and all training data (including synthetically generated data) will be shared. Additionally, the prompting repository used in this work to produce state-of-the-art results during inference will also be shared. Aloe comes with a healthcare-specific risk assessment to contribute to the safe use and deployment of such systems.
<img src="https://cdn-uploads.huggingface.co/production/uploads/62972c4979f193515da1d38e/VhWO_Q-lO3Pc72ed0fGVY.png" width="60%">
## Model Details
### [](https://huggingface.co/templates/model-card-example#model-description)Model Description
- **Developed by:**聽[HPAI](https://hpai.bsc.es/)
- **Model type:**聽Causal decoder-only transformer language model
- **Language(s) (NLP):**聽English (mainly)
- **License:**聽[Meta Llama 3 License](https://llama.meta.com/llama3/license/)
- **Finetuned from model :** [meta-llama/Meta-Llama-3-8B 路 Hugging Face](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
### [](https://huggingface.co/templates/model-card-example#model-sources-optional)Model Sources [optional]
- **Repository:**聽Coming Soon
- **Paper [optional]:** Coming soon
## Uses
### Direct Use
We encourage the use of Aloe for research purposes, as a
stepping stone to build better foundational models for healthcare.
### Out-of-Scope Use
These models are not to be used for clinical practice, medical diagnosis, or any other form of direct or indirect healthcare advice. Models are prone to error and can produce toxic content. The use of Aloe models for activities harmful for individuals, such as spam, fraud, or impersonation, is prohibited.
## Bias, Risks, and Limitations
First let us consider Healthcare professional impersonation, a fraudulent behaviour which currently generates billions of dollars in profit https://www.justice.gov/opa/pr/justice-department-charges-dozens-12-billion-health-care-fraud. A model such as Aloe could be used to increase the efficacy of such deceiving activities, making them more widespread. The main preventive actions are public literacy on the unreliability of digitised information and the importance of medical registration, and legislation enforcing AI-generated content disclaimers. The second risk we consider is medical decision-making without professional supervision. While this is already an issue in modern societies (\eg self-medication) a model such as Aloe, capable of producing high-quality conversational data, can facilitate self-delusion, particularly in the presence of sycophancy. By producing tailored responses, it can also be used to generate actionable answers. Public literacy on the dangers of self-diagnosis is one of the main defences, together with the introduction of disclaimers and warnings on the models' outputs. The last risk we consider is the access to information on dangerous substances or procedures. While the literature on sensitive content can already be found on different sources (\eg libraries, internet, dark web), LLMs can centralize such access, making it nearly impossible to control the flow of such information. Model alignment can help in that regard, but so far the effects remain insufficient, as jailbreaking methods still overcome it.
<img src="https://cdn-uploads.huggingface.co/production/uploads/62972c4979f193515da1d38e/JR7AU-DwJRNAmk8vFPmfT.png" width="60%">
### Recommendations
We avoid the use of all personal data in our training. Model safety cannot be guaranteed, as shown in the red teaming results. Aloe can produce toxic content under the appropriate prompts. For these reasons, minors should not be left alone to interact with Aloe without supervision.
## How to Get Started with the Model
Use the code below to get started with the model. You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
#### Transformers pipeline
```python
import transformers
import torch
model_id = "HPAI-BSC/Llama3-Aloe-8B-Alpha"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are an expert medical assistant named Aloe, developed by the High Performance Artificial Intelligence Group at Barcelona Supercomputing Center(BSC). You are to be a helpful, respectful, and honest assistant."},
{"role": "user", "content": "Hello."},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
#### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "HPAI-BSC/Llama3-Aloe-8B-Alpha"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are an expert medical assistant named Aloe, developed by the High Performance Artificial Intelligence Group at Barcelona Supercomputing Center(BSC). You are to be a helpful, respectful, and honest assistant."},
{"role": "user", "content": "Hello"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
## Training Details
Supervised fine-tuning on top of Llama 3 8B using medical and general domain datasets, model merging using DARE-TIES process, two-stage DPO process for human preference alignment. More details coming soon.
### Training Data
- Medical and general domain datasets, including synthetic data generated using Mixtral-8x7B and Genstruct
- argilla/dpo-mix-7k
- nvidia/HelpSteer
- Custom preference data with adversarial prompts generated from Anthropic Harmless, Chen et al., and original prompts
### Training Procedure
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:**聽[More Information Needed]
#### Speeds, Sizes, Times [optional]
[More Information Needed]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
- [MedQA (USMLE)](https://huggingface.co/datasets/bigbio/med_qa)
- [MedMCQA](https://huggingface.co/datasets/medmcqa)
- [PubMedQA](https://huggingface.co/datasets/bigbio/pubmed_qa)
- [MMLU-Medical](https://huggingface.co/datasets/lukaemon/mmlu)
- [MedQA-4-Option](https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options)
#### Factors
[More Information Needed]
#### Metrics
- Accuracy: suite the evaluation of multiple-choice question-answering tasks.
### Results
<img src="https://cdn-uploads.huggingface.co/production/uploads/62972c4979f193515da1d38e/5viYXiXgsTnlMLVRNa1NP.png" width="70%">
#### Summary
To compare Aloe with the most competitive open models (both general purpose and healthcare-specific) we use popular healthcare datasets (\eg PubMedQA, MedMCQA, MedQA and MMLU for six medical tasks only), together with the new and highly reliable CareQA. We produce the standard MultiMedQA score for reference, by computing the weighted average accuracy on all scores except CareQA. Additionally, we calculate the arithmetic mean across all datasets. The Medical MMLU is calculated by averaging the six medical subtasks: Anatomy, Clinical knowledge, College Biology, College medicine, Medical genetics, and Professional medicine.
Benchmark results indicate the training conducted on Aloe has boosted its performance slightly above Llama3-8B-Instruct. Llama3-Aloe-8B-Alpha outperforms larger models like Meditron 70B, and is close to larger base models, like Yi-34} For the former, this gain is consistent even when using SC-CoT, using their best-reported variant. All these results make Llama3-Aloe-8B-Alpha the best healthcare LLM of its size.
With the help of prompting techniques the performance of Llama3-Aloe-8B-Alpha is significantly improved. Medprompting in particular provides a 7\% increase in reported accuracy, after which \aloealpha only lags behind the ten times bigger Llama-3-70B-Instruct. This improvement is mostly consistent across medical fields. Llama3-Aloe-8B-Alpha with medprompting beats the performance of Meditron 70B with their self reported 20 shot SC-CoT in MMLU med and is slightly worse in the other benchmarks.
## Model Examination [optional]
[More Information Needed]
## Environmental Impact
Carbon emissions can be estimated using the聽[Machine Learning Impact calculator](https://mlco2.github.io/impact#compute)聽presented in聽[Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:**聽4xH100
- **Hours used:**聽7,000
- **Hardware Provider:**聽Barcelona Supercomputing Center
- **Compute Region:**聽Spain
- **Carbon Emitted:**聽439.25kg
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
mailto:[email protected]
|