Update README.md
Browse files
README.md
CHANGED
@@ -139,7 +139,7 @@ Use the code below to get started with the model. You can run conversational inf
|
|
139 |
import transformers
|
140 |
import torch
|
141 |
|
142 |
-
model_id = "HPAI-BSC/Qwen2.5-Aloe-Beta-
|
143 |
|
144 |
pipeline = transformers.pipeline(
|
145 |
"text-generation",
|
@@ -161,7 +161,7 @@ prompt = pipeline.tokenizer.apply_chat_template(
|
|
161 |
|
162 |
terminators = [
|
163 |
pipeline.tokenizer.eos_token_id,
|
164 |
-
pipeline.tokenizer.convert_tokens_to_ids("<|
|
165 |
]
|
166 |
|
167 |
outputs = pipeline(
|
@@ -169,8 +169,10 @@ outputs = pipeline(
|
|
169 |
max_new_tokens=256,
|
170 |
eos_token_id=terminators,
|
171 |
do_sample=True,
|
172 |
-
temperature=0.
|
173 |
-
top_p=0.
|
|
|
|
|
174 |
)
|
175 |
print(outputs[0]["generated_text"][len(prompt):])
|
176 |
```
|
@@ -181,7 +183,7 @@ print(outputs[0]["generated_text"][len(prompt):])
|
|
181 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
182 |
import torch
|
183 |
|
184 |
-
model_id = "HPAI-BSC/Qwen2.5-Aloe-Beta-
|
185 |
|
186 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
187 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -203,7 +205,7 @@ input_ids = tokenizer.apply_chat_template(
|
|
203 |
|
204 |
terminators = [
|
205 |
tokenizer.eos_token_id,
|
206 |
-
tokenizer.convert_tokens_to_ids("<|
|
207 |
]
|
208 |
|
209 |
outputs = model.generate(
|
@@ -211,8 +213,10 @@ outputs = model.generate(
|
|
211 |
max_new_tokens=256,
|
212 |
eos_token_id=terminators,
|
213 |
do_sample=True,
|
214 |
-
temperature=0.
|
215 |
-
top_p=0.
|
|
|
|
|
216 |
)
|
217 |
response = outputs[0][input_ids.shape[-1]:]
|
218 |
print(tokenizer.decode(response, skip_special_tokens=True))
|
|
|
139 |
import transformers
|
140 |
import torch
|
141 |
|
142 |
+
model_id = "HPAI-BSC/Qwen2.5-Aloe-Beta-72B"
|
143 |
|
144 |
pipeline = transformers.pipeline(
|
145 |
"text-generation",
|
|
|
161 |
|
162 |
terminators = [
|
163 |
pipeline.tokenizer.eos_token_id,
|
164 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|im_end|>")
|
165 |
]
|
166 |
|
167 |
outputs = pipeline(
|
|
|
169 |
max_new_tokens=256,
|
170 |
eos_token_id=terminators,
|
171 |
do_sample=True,
|
172 |
+
temperature=0.7,
|
173 |
+
top_p=0.8,
|
174 |
+
top_k=20,
|
175 |
+
repetition_penalty=1.05
|
176 |
)
|
177 |
print(outputs[0]["generated_text"][len(prompt):])
|
178 |
```
|
|
|
183 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
184 |
import torch
|
185 |
|
186 |
+
model_id = "HPAI-BSC/Qwen2.5-Aloe-Beta-72B"
|
187 |
|
188 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
189 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
205 |
|
206 |
terminators = [
|
207 |
tokenizer.eos_token_id,
|
208 |
+
tokenizer.convert_tokens_to_ids("<|im_end|>")
|
209 |
]
|
210 |
|
211 |
outputs = model.generate(
|
|
|
213 |
max_new_tokens=256,
|
214 |
eos_token_id=terminators,
|
215 |
do_sample=True,
|
216 |
+
temperature=0.7,
|
217 |
+
top_p=0.8,
|
218 |
+
top_k=20,
|
219 |
+
repetition_penalty=1.05
|
220 |
)
|
221 |
response = outputs[0][input_ids.shape[-1]:]
|
222 |
print(tokenizer.decode(response, skip_special_tokens=True))
|