Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,121 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
<h3 align="center">mT5 small spanish es</h3>
|
6 |
+
|
7 |
+
This a Spanish fine-tuned model using as a starting point the base model mt5-small by Google.
|
8 |
+
|
9 |
+
https://huggingface.co/google/mt5-small
|
10 |
+
|
11 |
+
|
12 |
+
## Datasets
|
13 |
+
|
14 |
+
The datasets used for the fine-tuning
|
15 |
+
|
16 |
+
Task Prefix
|
17 |
+
Multinli (English) multi nli premise:[Text] hypo:[Text]
|
18 |
+
Multinli (Spanish) multi nli premise:[Text] hypo:[Text]
|
19 |
+
Pawx (English) pawx sentence1:[Text] sentence2:[Text]
|
20 |
+
Pawx (Spanish) pawx sentence1:[Text] sentence2:[Text]
|
21 |
+
Squad (English) question:[Text] context:[Text]
|
22 |
+
Squad (Spanish) question:[Text] context:[Text]
|
23 |
+
Translations (English-Spanish) translate English to Spanish:[Text]
|
24 |
+
Translations (Spanish-English) translate Spanish to English:[Text]
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
## Inference
|
29 |
+
|
30 |
+
The following piece of code could be used to perfome the different model tasks.
|
31 |
+
|
32 |
+
Translations
|
33 |
+
|
34 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
35 |
+
|
36 |
+
model_name = "HURIDOCS/mt5-small-spanish-es"
|
37 |
+
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
40 |
+
|
41 |
+
task = "translate Spanish to English:Esta frase es para probar el modelo"
|
42 |
+
input_ids = tokenizer(
|
43 |
+
[task],
|
44 |
+
return_tensors="pt",
|
45 |
+
padding="max_length",
|
46 |
+
truncation=True,
|
47 |
+
max_length=512
|
48 |
+
)["input_ids"]
|
49 |
+
|
50 |
+
output_ids = model.generate(
|
51 |
+
input_ids=input_ids,
|
52 |
+
max_length=84,
|
53 |
+
no_repeat_ngram_size=2,
|
54 |
+
num_beams=4
|
55 |
+
)[0]
|
56 |
+
|
57 |
+
result_text = tokenizer.decode(
|
58 |
+
output_ids,
|
59 |
+
skip_special_tokens=True,
|
60 |
+
clean_up_tokenization_spaces=False
|
61 |
+
)
|
62 |
+
|
63 |
+
print(result_text)
|
64 |
+
|
65 |
+
|
66 |
+
Question answering
|
67 |
+
|
68 |
+
|
69 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
70 |
+
|
71 |
+
model_name = "HURIDOCS/mt5-small-spanish-es"
|
72 |
+
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
74 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
75 |
+
|
76 |
+
task = '''question:En qué país se encuentra Normandía? context:Los normandos (normandos: Nourmann; Francés: Normandos; Normanni)
|
77 |
+
fue el pueblo que en los siglos X y XI dio su nombre a Normandía, una región de Francia.
|
78 |
+
Eran descendientes de invasores nórdicos ('normandos" viene de "Norseman") y piratas de Dinamarca, Islandia y Noruega que,
|
79 |
+
bajo su líder Rollo, acordaron jurar lealtad al rey Carlos III de Francia Occidental. A través de generaciones de asimilación
|
80 |
+
y mezcla con las poblaciones nativas francas y galas romanas, sus descendientes se fusionarían gradualmente con las culturas
|
81 |
+
carolingias de Francia Occidental. La identidad cultural y étnica distintiva de los normandos surgió inicialmente en la
|
82 |
+
primera mitad del siglo X, y continuó evolucionando durante los siglos siguientes.'''
|
83 |
+
|
84 |
+
input_ids = tokenizer(
|
85 |
+
[task],
|
86 |
+
return_tensors="pt",
|
87 |
+
padding="max_length",
|
88 |
+
truncation=True,
|
89 |
+
max_length=512
|
90 |
+
)["input_ids"]
|
91 |
+
|
92 |
+
output_ids = model.generate(
|
93 |
+
input_ids=input_ids,
|
94 |
+
max_length=84,
|
95 |
+
no_repeat_ngram_size=2,
|
96 |
+
num_beams=4
|
97 |
+
)[0]
|
98 |
+
|
99 |
+
result_text = tokenizer.decode(
|
100 |
+
output_ids,
|
101 |
+
skip_special_tokens=True,
|
102 |
+
clean_up_tokenization_spaces=False
|
103 |
+
)
|
104 |
+
|
105 |
+
print(result_text)
|
106 |
+
|
107 |
+
## Fine-tuning
|
108 |
+
|
109 |
+
Check out the Transformers Libray examples
|
110 |
+
|
111 |
+
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering
|
112 |
+
|
113 |
+
|
114 |
+
## Performance
|
115 |
+
|
116 |
+
Spanish SQuAD v2 512 tokens
|
117 |
+
|
118 |
+
Model Exact match F1
|
119 |
+
rank 1 mrm8488/distill-bert-base-spanish-wwm-cased 50.43% 71.45%
|
120 |
+
rank 2 **mT5 small spanish es** 48.35% 62.03%
|
121 |
+
rank 3 flan-t5-small 41.44% 56.48%
|