File size: 2,455 Bytes
0dd51b5 a05195e 43111b3 a05195e b44d83f a05195e b593bc0 a05195e b593bc0 9db566f 9055d67 9db566f 9055d67 9db566f 9055d67 9db566f 0f0e610 b593bc0 a05195e 9db566f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: apache-2.0
---
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
## Swin Transformer model HPU configuration
This model only contains the `GaudiConfig` file for running the [Swin Transformer](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) model on Habana's Gaudi processors (HPU).
**This model contains no model weights, only a GaudiConfig.**
This enables to specify:
- `use_fused_adam`: whether to use Habana's custom AdamW implementation
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
- `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision
## Usage
The model is instantiated the same way as in the Transformers library.
The only difference is that there are a few new training arguments specific to HPUs.\
It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy.
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/image-classification/run_image_classification.py) is an image classification example script to fine-tune a model. You can run it with Swin with the following command:
```bash
python run_image_classification.py \
--model_name_or_path microsoft/swin-base-patch4-window7-224-in22k \
--dataset_name cifar10 \
--output_dir /tmp/outputs/ \
--remove_unused_columns False \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 5 \
--per_device_train_batch_size 64 \
--per_device_eval_batch_size 64 \
--evaluation_strategy epoch \
--save_strategy epoch \
--load_best_model_at_end True \
--save_total_limit 3 \
--seed 1337 \
--use_habana \
--use_lazy_mode \
--gaudi_config_name Habana/swin \
--throughput_warmup_steps 3 \
--ignore_mismatched_sizes \
--bf16
```
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.
|