HachiML commited on
Commit
6ec2f7d
·
verified ·
1 Parent(s): 413996d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -165
README.md CHANGED
@@ -1,13 +1,22 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
 
 
 
11
 
12
  ## Model Details
13
 
@@ -35,167 +44,65 @@ This is the model card of a 🤗 transformers model that has been pushed on the
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - SkillTree
5
+ - mistral
6
+ license: apache-2.0
7
  ---
8
 
9
+ # Model Card for SkillTree Enhanced Model
10
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
 
13
+ ## Model Details
14
+
15
+ This model has been enhanced using the SkillTree approach, which applies specific skills extracted from advanced training or fine-tuning processes to improve the model's capabilities in targeted areas.
16
 
17
+ - **Base Model:** (Name of the base model)
18
+ - **Skill Tree Applied:** (Name of the skill tree used for enhancement)
19
+ - **Language(s) (NLP):** Japanese
20
 
21
  ## Model Details
22
 
 
44
 
45
  ## Uses
46
 
47
+ This section should describe the intended use cases for the enhanced model. It might include scenarios such as code generation, conversational AI, text summarization, or any other specific tasks the model has been enhanced to perform better. Be sure to include any recommendations or limitations on the model's use.
48
+
49
+ ```Python
50
+ # Import library
51
+ import torch
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+
54
+ # Load model
55
+ model_name = "HachiML/Swallow-MS-7b-v0.1-MathSkill-OpenMath"
56
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
57
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
58
+
59
+ # Inference 1
60
+ prompt = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?\n"
61
+ input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
62
+ tokens = model.generate(input_ids.to(device=model.device), max_new_tokens=256, temperature=0.99, top_p=0.95, do_sample=True)
63
+ out = tokenizer.decode(tokens[0], skip_special_tokens=True)
64
+ print(out)
65
+
66
+ # Inference 2
67
+ prompt = "ナタリアは4月に48人の友人にクリップを売り、5月にはその半分の数のクリップを売った。ナタリアが4月と5月に売ったクリップの数は?:\n"
68
+ input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
69
+ tokens = model.generate(input_ids.to(device=model.device), max_new_tokens=256, temperature=0.99, top_p=0.95, do_sample=True)
70
+ out = tokenizer.decode(tokens[0], skip_special_tokens=True)
71
+ print(out)
72
+ ```
73
+
74
+ ## Response Examples
75
+
76
+ Below are examples of responses from the model, demonstrating how the SkillTree enhancement has improved its performance.
77
+
78
+ ### Example 1:
79
+
80
+ - **Input:** Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?\n
81
+ - **Output:** Let's solve this problem using Python code.
82
+ <llm-code>
83
+ friends_sold_in_April = 48
84
+ friends_sold_in_May = friends_sold_in_April / 2
85
+ clips_sold_in_April_and_May = friends_sold_in_April + friends_sold_in_May
86
+ clips_sold_in_April_and_May
87
+ </llm-code>
88
+ <llm-code-output>
89
+ 72.0
90
+ </llm-code-output>
91
+ Thus, in April and May, Natalia sold \boxed{72} clips in total.
92
+
93
+ ### Example 2:
94
+
95
+ - **Input:** ナタリアは4月に48人の友人にクリップを売り、5月にはその半分の数のクリップを売った。ナタリアが4月と5月に売ったクリップの数は?:\n
96
+ - **Output:** Let's solve this problem using Python code.
97
+ <llm-code>
98
+ clip_count = 48
99
+ clip_count_sold_4th_month = clip_count
100
+ clip_count_sold_5th_month = clip_count_sold_4th_month / 2
101
+ clip_count_sold_in_both_months = clip_count_sold_4th_month + clip_count_sold_5th_month
102
+ clip_count_sold_in_both_months
103
+ </llm-code>
104
+ <llm-code-output>
105
+ 72.0
106
+ </llm-code-output>
107
+ So, the total number of clip sales is \textbf{72}.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108