Update README.md
Browse files
README.md
CHANGED
|
@@ -1,13 +1,22 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for Model
|
| 7 |
|
| 8 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
|
@@ -35,167 +44,65 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
###
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
|
| 201 |
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- SkillTree
|
| 5 |
+
- mistral
|
| 6 |
+
license: apache-2.0
|
| 7 |
---
|
| 8 |
|
| 9 |
+
# Model Card for SkillTree Enhanced Model
|
| 10 |
|
| 11 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 12 |
|
| 13 |
+
## Model Details
|
| 14 |
+
|
| 15 |
+
This model has been enhanced using the SkillTree approach, which applies specific skills extracted from advanced training or fine-tuning processes to improve the model's capabilities in targeted areas.
|
| 16 |
|
| 17 |
+
- **Base Model:** (Name of the base model)
|
| 18 |
+
- **Skill Tree Applied:** (Name of the skill tree used for enhancement)
|
| 19 |
+
- **Language(s) (NLP):** Japanese
|
| 20 |
|
| 21 |
## Model Details
|
| 22 |
|
|
|
|
| 44 |
|
| 45 |
## Uses
|
| 46 |
|
| 47 |
+
This section should describe the intended use cases for the enhanced model. It might include scenarios such as code generation, conversational AI, text summarization, or any other specific tasks the model has been enhanced to perform better. Be sure to include any recommendations or limitations on the model's use.
|
| 48 |
+
|
| 49 |
+
```Python
|
| 50 |
+
# Import library
|
| 51 |
+
import torch
|
| 52 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 53 |
+
|
| 54 |
+
# Load model
|
| 55 |
+
model_name = "HachiML/Swallow-MS-7b-v0.1-MathSkill-OpenMath"
|
| 56 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 57 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 58 |
+
|
| 59 |
+
# Inference 1
|
| 60 |
+
prompt = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?\n"
|
| 61 |
+
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
| 62 |
+
tokens = model.generate(input_ids.to(device=model.device), max_new_tokens=256, temperature=0.99, top_p=0.95, do_sample=True)
|
| 63 |
+
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
| 64 |
+
print(out)
|
| 65 |
+
|
| 66 |
+
# Inference 2
|
| 67 |
+
prompt = "ナタリアは4月に48人の友人にクリップを売り、5月にはその半分の数のクリップを売った。ナタリアが4月と5月に売ったクリップの数は?:\n"
|
| 68 |
+
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
| 69 |
+
tokens = model.generate(input_ids.to(device=model.device), max_new_tokens=256, temperature=0.99, top_p=0.95, do_sample=True)
|
| 70 |
+
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
| 71 |
+
print(out)
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
## Response Examples
|
| 75 |
+
|
| 76 |
+
Below are examples of responses from the model, demonstrating how the SkillTree enhancement has improved its performance.
|
| 77 |
+
|
| 78 |
+
### Example 1:
|
| 79 |
+
|
| 80 |
+
- **Input:** Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?\n
|
| 81 |
+
- **Output:** Let's solve this problem using Python code.
|
| 82 |
+
<llm-code>
|
| 83 |
+
friends_sold_in_April = 48
|
| 84 |
+
friends_sold_in_May = friends_sold_in_April / 2
|
| 85 |
+
clips_sold_in_April_and_May = friends_sold_in_April + friends_sold_in_May
|
| 86 |
+
clips_sold_in_April_and_May
|
| 87 |
+
</llm-code>
|
| 88 |
+
<llm-code-output>
|
| 89 |
+
72.0
|
| 90 |
+
</llm-code-output>
|
| 91 |
+
Thus, in April and May, Natalia sold \boxed{72} clips in total.
|
| 92 |
+
|
| 93 |
+
### Example 2:
|
| 94 |
+
|
| 95 |
+
- **Input:** ナタリアは4月に48人の友人にクリップを売り、5月にはその半分の数のクリップを売った。ナタリアが4月と5月に売ったクリップの数は?:\n
|
| 96 |
+
- **Output:** Let's solve this problem using Python code.
|
| 97 |
+
<llm-code>
|
| 98 |
+
clip_count = 48
|
| 99 |
+
clip_count_sold_4th_month = clip_count
|
| 100 |
+
clip_count_sold_5th_month = clip_count_sold_4th_month / 2
|
| 101 |
+
clip_count_sold_in_both_months = clip_count_sold_4th_month + clip_count_sold_5th_month
|
| 102 |
+
clip_count_sold_in_both_months
|
| 103 |
+
</llm-code>
|
| 104 |
+
<llm-code-output>
|
| 105 |
+
72.0
|
| 106 |
+
</llm-code-output>
|
| 107 |
+
So, the total number of clip sales is \textbf{72}.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|