Hajime Yagihara commited on
Commit
2c9b82f
·
1 Parent(s): e46d4c6
Files changed (1) hide show
  1. modeling_mpt.py +1 -27
modeling_mpt.py CHANGED
@@ -30,18 +30,11 @@ class MPTPreTrainedModel(PreTrainedModel):
30
  base_model_prefix = 'model'
31
  _no_split_modules = ['MPTBlock']
32
 
33
- supports_gradient_checkpointing = True
34
-
35
- def _set_gradient_checkpointing(self, module, value=False):
36
- if isinstance(module, MPTModel):
37
- module.gradient_checkpointing = value
38
-
39
  class MPTModel(MPTPreTrainedModel):
40
 
41
  def __init__(self, config: MPTConfig):
42
  config._validate_config()
43
  super().__init__(config)
44
- self.gradient_checkpointing = False
45
  self.attn_impl = config.attn_config['attn_impl']
46
  self.prefix_lm = config.attn_config['prefix_lm']
47
  self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
@@ -151,9 +144,6 @@ class MPTModel(MPTPreTrainedModel):
151
  def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
152
  return_dict = return_dict if return_dict is not None else self.config.return_dict
153
  use_cache = use_cache if use_cache is not None else self.config.use_cache
154
- if self.gradient_checkpointing and self.training:
155
- if use_cache:
156
- use_cache = False
157
  if input_ids is not None and inputs_embeds is not None:
158
  raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
159
  elif input_ids is not None:
@@ -228,23 +218,7 @@ class MPTModel(MPTPreTrainedModel):
228
  assert all_hidden_states is not None
229
  all_hidden_states = all_hidden_states + (x,)
230
  past_key_value = past_key_values[b_idx] if past_key_values is not None else None
231
- if self.gradient_checkpointing and self.training:
232
- def create_custom_forward(module):
233
- def custom_forward(*inputs):
234
- # None for past_key_value
235
- return module(*inputs)
236
- return custom_forward
237
- (x, past_key_value) = torch.utils.checkpoint.checkpoint(
238
- create_custom_forward(block),
239
- x,
240
- past_key_value,
241
- attn_bias,
242
- attention_mask,
243
- self.is_causal,
244
- )
245
- else:
246
- (x, _, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
247
- # (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
248
  if past_key_values is not None:
249
  past_key_values[b_idx] = past_key_value
250
  if output_attentions:
 
30
  base_model_prefix = 'model'
31
  _no_split_modules = ['MPTBlock']
32
 
 
 
 
 
 
 
33
  class MPTModel(MPTPreTrainedModel):
34
 
35
  def __init__(self, config: MPTConfig):
36
  config._validate_config()
37
  super().__init__(config)
 
38
  self.attn_impl = config.attn_config['attn_impl']
39
  self.prefix_lm = config.attn_config['prefix_lm']
40
  self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
 
144
  def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
145
  return_dict = return_dict if return_dict is not None else self.config.return_dict
146
  use_cache = use_cache if use_cache is not None else self.config.use_cache
 
 
 
147
  if input_ids is not None and inputs_embeds is not None:
148
  raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
149
  elif input_ids is not None:
 
218
  assert all_hidden_states is not None
219
  all_hidden_states = all_hidden_states + (x,)
220
  past_key_value = past_key_values[b_idx] if past_key_values is not None else None
221
+ (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
  if past_key_values is not None:
223
  past_key_values[b_idx] = past_key_value
224
  if output_attentions: