Hajime Yagihara
commited on
Commit
·
577efb5
1
Parent(s):
8589ada
add inputs_embeds params to model
Browse files- modeling_mpt.py +31 -8
modeling_mpt.py
CHANGED
@@ -140,11 +140,30 @@ class MPTModel(MPTPreTrainedModel):
|
|
140 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
141 |
return attn_bias
|
142 |
|
143 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
|
|
144 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
145 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
if attention_mask is not None:
|
147 |
attention_mask = attention_mask.bool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
if prefix_mask is not None:
|
149 |
prefix_mask = prefix_mask.bool()
|
150 |
if not return_dict:
|
@@ -152,8 +171,8 @@ class MPTModel(MPTPreTrainedModel):
|
|
152 |
if output_attentions:
|
153 |
if self.attn_impl != 'torch':
|
154 |
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
155 |
-
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
156 |
-
|
157 |
if self.prefix_lm and prefix_mask is None:
|
158 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
159 |
if self.training:
|
@@ -161,9 +180,10 @@ class MPTModel(MPTPreTrainedModel):
|
|
161 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
162 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
163 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
164 |
-
S = input_ids.size(1)
|
|
|
165 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
166 |
-
tok_emb = self.wte(input_ids)
|
167 |
if self.alibi:
|
168 |
x = tok_emb
|
169 |
else:
|
@@ -177,7 +197,8 @@ class MPTModel(MPTPreTrainedModel):
|
|
177 |
if S + past_position > self.config.max_seq_len:
|
178 |
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
179 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
180 |
-
if attention_mask is not None:
|
|
|
181 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
182 |
pos_emb = self.wpe(pos)
|
183 |
x = tok_emb + pos_emb
|
@@ -259,10 +280,12 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
259 |
def get_decoder(self):
|
260 |
return self.transformer
|
261 |
|
262 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
|
|
263 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
264 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
265 |
-
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
|
|
266 |
logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
267 |
if self.logit_scale is not None:
|
268 |
if self.logit_scale == 0:
|
|
|
140 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
141 |
return attn_bias
|
142 |
|
143 |
+
# def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
144 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
145 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
146 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
147 |
+
if input_ids is not None and inputs_embeds is not None:
|
148 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
149 |
+
elif input_ids is not None:
|
150 |
+
batch_size, seq_length = input_ids.shape
|
151 |
+
elif inputs_embeds is not None:
|
152 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
153 |
+
else:
|
154 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
155 |
if attention_mask is not None:
|
156 |
attention_mask = attention_mask.bool()
|
157 |
+
else:
|
158 |
+
attention_mask = torch.ones(
|
159 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
160 |
+
)
|
161 |
+
|
162 |
+
if inputs_embeds is None:
|
163 |
+
tok_emb = self.wte(input_ids)
|
164 |
+
else:
|
165 |
+
tok_emb = inputs_embeds
|
166 |
+
|
167 |
if prefix_mask is not None:
|
168 |
prefix_mask = prefix_mask.bool()
|
169 |
if not return_dict:
|
|
|
171 |
if output_attentions:
|
172 |
if self.attn_impl != 'torch':
|
173 |
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
174 |
+
# if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
175 |
+
# raise NotImplementedError('MPT does not support training with left padding.')
|
176 |
if self.prefix_lm and prefix_mask is None:
|
177 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
178 |
if self.training:
|
|
|
180 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
181 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
182 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
183 |
+
# S = input_ids.size(1)
|
184 |
+
S = seq_length
|
185 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
186 |
+
# tok_emb = self.wte(input_ids)
|
187 |
if self.alibi:
|
188 |
x = tok_emb
|
189 |
else:
|
|
|
197 |
if S + past_position > self.config.max_seq_len:
|
198 |
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
199 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
200 |
+
# if attention_mask is not None :
|
201 |
+
if attention_mask is not None and not self.training:
|
202 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
203 |
pos_emb = self.wpe(pos)
|
204 |
x = tok_emb + pos_emb
|
|
|
280 |
def get_decoder(self):
|
281 |
return self.transformer
|
282 |
|
283 |
+
# def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
284 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
285 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
286 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
287 |
+
# outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
288 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds)
|
289 |
logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
290 |
if self.logit_scale is not None:
|
291 |
if self.logit_scale == 0:
|