Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.70 +/- 1.37
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efbeb99563a9073a4203ac53bc890eccf6249f58db0e2996bf554edb52ab8f4f
|
3 |
+
size 108123
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a2
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fed0a5e77f0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fed0a5e9ac0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1685498844637543925,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2hhaWRlci9taW5jb25kYTMvdWJ1bnR1L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvaGFpZGVyL21pbmNvbmRhMy91YnVudHUvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5XnXPtTBRruAJw0/5XnXPtTBRruAJw0/5XnXPtTBRruAJw0/5XnXPtTBRruAJw0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAD7EXPpzgjb/30b4/QZudvbTelj+frq6/uPLaP52c6T1u64m/4h2zv0MJk79sfzO9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADledc+1MFGu4AnDT+tsnQ8MQ1Vuky9Jzzledc+1MFGu4AnDT+tsnQ8MQ1Vuky9Jzzledc+1MFGu4AnDT+tsnQ8MQ1Vuky9Jzzledc+1MFGu4AnDT+tsnQ8MQ1Vuky9JzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.42085186 -0.00303279 0.551384 ]\n [ 0.42085186 -0.00303279 0.551384 ]\n [ 0.42085186 -0.00303279 0.551384 ]\n [ 0.42085186 -0.00303279 0.551384 ]]",
|
60 |
+
"desired_goal": "[[ 0.14813636 -1.108417 1.4907826 ]\n [-0.07695628 1.1786714 -1.364704 ]\n [ 1.7105322 0.11406825 -1.0774972 ]\n [-1.3993495 -1.1487201 -0.04382269]]",
|
61 |
+
"observation": "[[ 0.42085186 -0.00303279 0.551384 0.01493518 -0.00081273 0.010238 ]\n [ 0.42085186 -0.00303279 0.551384 0.01493518 -0.00081273 0.010238 ]\n [ 0.42085186 -0.00303279 0.551384 0.01493518 -0.00081273 0.010238 ]\n [ 0.42085186 -0.00303279 0.551384 0.01493518 -0.00081273 0.010238 ]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmcmKvf/OQj1fZoo+ur3LPDyN171waVI+0GbKvSNOjj1CC7s8WKA7vFqYy71m85M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.06776733 0.04756069 0.27031228]\n [ 0.02487074 -0.10524985 0.20548034]\n [-0.09882891 0.06948497 0.02283252]\n [-0.0114518 -0.09941168 0.28896636]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEf5F0JiJGcCUhpRSlIwBbJRLMowBdJRHQJ5wIPmPo3d1fZQoaAZoCWgPQwhFZ5lFKHYMwJSGlFKUaBVLMmgWR0Ceb9FxGUfQdX2UKGgGaAloD0MIxFxStd0UE8CUhpRSlGgVSzJoFkdAnm+DfBN21XV9lChoBmgJaA9DCKrukc1V4xPAlIaUUpRoFUsyaBZHQJ5vNjvuw5h1fZQoaAZoCWgPQwhTz4JQ3pcVwJSGlFKUaBVLMmgWR0CecaUGmk30dX2UKGgGaAloD0MIHSJuTiWDD8CUhpRSlGgVSzJoFkdAnnFVqBVdX3V9lChoBmgJaA9DCE5FKowtpArAlIaUUpRoFUsyaBZHQJ5xB4qwyIp1fZQoaAZoCWgPQwgYzjXM0GgTwJSGlFKUaBVLMmgWR0CecLp9JBgNdX2UKGgGaAloD0MIL6TDQxhfBsCUhpRSlGgVSzJoFkdAnnNFnM+u/3V9lChoBmgJaA9DCLHEA8qmbBXAlIaUUpRoFUsyaBZHQJ5y9k5IYm91fZQoaAZoCWgPQwhCe/Xx0FcGwJSGlFKUaBVLMmgWR0CecqhOP/70dX2UKGgGaAloD0MIXknyXN8H+b+UhpRSlGgVSzJoFkdAnnJcB2fTTnV9lChoBmgJaA9DCLw9CAH5UhfAlIaUUpRoFUsyaBZHQJ502qcVgx91fZQoaAZoCWgPQwjURJ+PMgIMwJSGlFKUaBVLMmgWR0CedIr6+FlDdX2UKGgGaAloD0MIiUD1DyLZFMCUhpRSlGgVSzJoFkdAnnQ9C/oJRnV9lChoBmgJaA9DCAX8GkmC0AXAlIaUUpRoFUsyaBZHQJ5z78Q7LdN1fZQoaAZoCWgPQwgRrKqX38kMwJSGlFKUaBVLMmgWR0Cedmi7kGRndX2UKGgGaAloD0MI+kLIef8/CMCUhpRSlGgVSzJoFkdAnnYZDVpblnV9lChoBmgJaA9DCHnOFhBaLwjAlIaUUpRoFUsyaBZHQJ51yx4Y77t1fZQoaAZoCWgPQwjQ04BB0ucHwJSGlFKUaBVLMmgWR0CedX6wt8NQdX2UKGgGaAloD0MIt5c0RuuoD8CUhpRSlGgVSzJoFkdAnnf4P07KaHV9lChoBmgJaA9DCKshcY+lTwPAlIaUUpRoFUsyaBZHQJ53qXBxgiN1fZQoaAZoCWgPQwhdcAZ/v9gAwJSGlFKUaBVLMmgWR0Ced1tO2y9mdX2UKGgGaAloD0MIV12HakryFcCUhpRSlGgVSzJoFkdAnncOeJ53T3V9lChoBmgJaA9DCLq8OVyrXQnAlIaUUpRoFUsyaBZHQJ55egoPTXt1fZQoaAZoCWgPQwhW1cvvNBkNwJSGlFKUaBVLMmgWR0CeeSqc3EQ5dX2UKGgGaAloD0MI2v6VlSbFC8CUhpRSlGgVSzJoFkdAnnjccU/OdHV9lChoBmgJaA9DCDhr8L4qNwLAlIaUUpRoFUsyaBZHQJ54j4SHuZ11fZQoaAZoCWgPQwhVppiDoFMSwJSGlFKUaBVLMmgWR0CeevseXAuadX2UKGgGaAloD0MIh272B8pdE8CUhpRSlGgVSzJoFkdAnnqrtNSIg3V9lChoBmgJaA9DCJayDHGsaxTAlIaUUpRoFUsyaBZHQJ56XcfvF3p1fZQoaAZoCWgPQwgyyF2EKZoUwJSGlFKUaBVLMmgWR0CeehDB/I8ydX2UKGgGaAloD0MIJPHydK7oEsCUhpRSlGgVSzJoFkdAnnyF1SwW33V9lChoBmgJaA9DCK37x0J0iAXAlIaUUpRoFUsyaBZHQJ58NnanJkp1fZQoaAZoCWgPQwj8/s2LE/8GwJSGlFKUaBVLMmgWR0Cee+hH9WIXdX2UKGgGaAloD0MIlIjwL4LWG8CUhpRSlGgVSzJoFkdAnnubNjbzsnV9lChoBmgJaA9DCDC45o7+px3AlIaUUpRoFUsyaBZHQJ5+BxsEaEV1fZQoaAZoCWgPQwhVaCCWzTwOwJSGlFKUaBVLMmgWR0CefbeIVM24dX2UKGgGaAloD0MIPj22ZcD5D8CUhpRSlGgVSzJoFkdAnn1pYs/Y8XV9lChoBmgJaA9DCLni4qjchAzAlIaUUpRoFUsyaBZHQJ59HAFgUlB1fZQoaAZoCWgPQwh4Xio25lUMwJSGlFKUaBVLMmgWR0Cef4C/47A+dX2UKGgGaAloD0MIxCXHndKhFsCUhpRSlGgVSzJoFkdAnn8xCQcPv3V9lChoBmgJaA9DCNYcIJij1xfAlIaUUpRoFUsyaBZHQJ5+4yKvV3F1fZQoaAZoCWgPQwh2NuSfGSQTwJSGlFKUaBVLMmgWR0CefpXJHRTkdX2UKGgGaAloD0MIS8gHPZu1B8CUhpRSlGgVSzJoFkdAnoEXzUZvUHV9lChoBmgJaA9DCATLETKQ9xzAlIaUUpRoFUsyaBZHQJ6AyHck+ot1fZQoaAZoCWgPQwgiwr8IGrMMwJSGlFKUaBVLMmgWR0CegHtix3V1dX2UKGgGaAloD0MIMBAEyNDBEcCUhpRSlGgVSzJoFkdAnoAuc2BJ7XV9lChoBmgJaA9DCF/QQgJG9xfAlIaUUpRoFUsyaBZHQJ6CmcSXdCV1fZQoaAZoCWgPQwifyf55GlAPwJSGlFKUaBVLMmgWR0Cegkoq0+khdX2UKGgGaAloD0MINh5ssdtHGcCUhpRSlGgVSzJoFkdAnoH8STQmeHV9lChoBmgJaA9DCG5sdqT6jg/AlIaUUpRoFUsyaBZHQJ6BrzUZvUB1fZQoaAZoCWgPQwhWKqio+oUdwJSGlFKUaBVLMmgWR0CehB/I8yN5dX2UKGgGaAloD0MIwHebN05qDcCUhpRSlGgVSzJoFkdAnoPQPAfuC3V9lChoBmgJaA9DCAHAsWfPRQ7AlIaUUpRoFUsyaBZHQJ6DglE7W/d1fZQoaAZoCWgPQwi3Xz5ZMZwKwJSGlFKUaBVLMmgWR0CegzVWjoIOdX2UKGgGaAloD0MIesISDyhrGsCUhpRSlGgVSzJoFkdAnoXbyMDOknV9lChoBmgJaA9DCGAi3jr/hhLAlIaUUpRoFUsyaBZHQJ6FjEFW4mV1fZQoaAZoCWgPQwiJmX0eoxwVwJSGlFKUaBVLMmgWR0CehT9CNS62dX2UKGgGaAloD0MIKJmc2hk2GMCUhpRSlGgVSzJoFkdAnoTyKFZgX3V9lChoBmgJaA9DCMbdIForqhbAlIaUUpRoFUsyaBZHQJ6Ha1Vo6CF1fZQoaAZoCWgPQwjiI2JKJNEMwJSGlFKUaBVLMmgWR0CehxvWYnfEdX2UKGgGaAloD0MIc9U8R+QbDMCUhpRSlGgVSzJoFkdAnobN7F85S3V9lChoBmgJaA9DCK29T1WhKSDAlIaUUpRoFUsyaBZHQJ6GgMOPNml1fZQoaAZoCWgPQwj3zf3V424hwJSGlFKUaBVLMmgWR0CeiQI065oXdX2UKGgGaAloD0MICVBTy9ZiIcCUhpRSlGgVSzJoFkdAnoiyrxRVInV9lChoBmgJaA9DCFch5SfVngvAlIaUUpRoFUsyaBZHQJ6IZHww0wd1fZQoaAZoCWgPQwjVljrI69kgwJSGlFKUaBVLMmgWR0CeiBdjoZAIdX2UKGgGaAloD0MIrP9zmC/vCsCUhpRSlGgVSzJoFkdAnorJiVjZtnV9lChoBmgJaA9DCJT3cTRHZhPAlIaUUpRoFUsyaBZHQJ6KekAPuoh1fZQoaAZoCWgPQwisGoS53YsSwJSGlFKUaBVLMmgWR0CeiixYq5LAdX2UKGgGaAloD0MIN1X3yOZ6EMCUhpRSlGgVSzJoFkdAnonfPHDJl3V9lChoBmgJaA9DCKGCwwsiEgvAlIaUUpRoFUsyaBZHQJ6Mha5f+jx1fZQoaAZoCWgPQwjU8gNXeRIXwJSGlFKUaBVLMmgWR0CejDaKDTScdX2UKGgGaAloD0MIodtLGqO1DMCUhpRSlGgVSzJoFkdAnovpzxPO6nV9lChoBmgJaA9DCCMShZZ1fxDAlIaUUpRoFUsyaBZHQJ6LnSMLncN1fZQoaAZoCWgPQwjH8UOlEfMPwJSGlFKUaBVLMmgWR0CejjqH446wdX2UKGgGaAloD0MIyqSGNgC7CsCUhpRSlGgVSzJoFkdAno3rI91U2nV9lChoBmgJaA9DCOQs7GmHHxPAlIaUUpRoFUsyaBZHQJ6NnVEuxr11fZQoaAZoCWgPQwgV4SajyuAcwJSGlFKUaBVLMmgWR0CejVBInSfEdX2UKGgGaAloD0MIiQyreCPTDMCUhpRSlGgVSzJoFkdAno/UeMhounV9lChoBmgJaA9DCDEJF/IILgzAlIaUUpRoFUsyaBZHQJ6PhXlr/Kh1fZQoaAZoCWgPQwhCBvLs8m0MwJSGlFKUaBVLMmgWR0CejzelKsdUdX2UKGgGaAloD0MIilWDMLeLFMCUhpRSlGgVSzJoFkdAno7qzAvcrXV9lChoBmgJaA9DCF5lbVM8DgXAlIaUUpRoFUsyaBZHQJ6RgpG4I8h1fZQoaAZoCWgPQwiIKvwZ3hwQwJSGlFKUaBVLMmgWR0CekTM98qnWdX2UKGgGaAloD0MISKmEJ/TKHcCUhpRSlGgVSzJoFkdAnpDlmvnr6nV9lChoBmgJaA9DCJ1kq8spsRTAlIaUUpRoFUsyaBZHQJ6QmIZZSvV1fZQoaAZoCWgPQwiISbiQRxAOwJSGlFKUaBVLMmgWR0Cekxp2ll9SdX2UKGgGaAloD0MIZLFNKhrLCsCUhpRSlGgVSzJoFkdAnpLLFjurqHV9lChoBmgJaA9DCNwsXiwMIRbAlIaUUpRoFUsyaBZHQJ6SfSgGr0d1fZQoaAZoCWgPQwhnnlxTIHMGwJSGlFKUaBVLMmgWR0CekjASFoL5dX2UKGgGaAloD0MIeXO4VntoE8CUhpRSlGgVSzJoFkdAnpTiTpxFRnV9lChoBmgJaA9DCHPYfcfwqBXAlIaUUpRoFUsyaBZHQJ6Ukt8NQTF1fZQoaAZoCWgPQwjHoX4XtgYDwJSGlFKUaBVLMmgWR0CelETEzfrKdX2UKGgGaAloD0MIXFSLiGISDMCUhpRSlGgVSzJoFkdAnpP4mb9ZR3V9lChoBmgJaA9DCAAAAAAAQBbAlIaUUpRoFUsyaBZHQJ6Wr9UCJXR1fZQoaAZoCWgPQwjUgaynVu8YwJSGlFKUaBVLMmgWR0CelmDzRQaadX2UKGgGaAloD0MI8x/Sb1+HFsCUhpRSlGgVSzJoFkdAnpYTN+so2HV9lChoBmgJaA9DCO4ljdE6SgTAlIaUUpRoFUsyaBZHQJ6Vxlbu+h51ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:833b4f8bdc206594c0d963c047bf5659a5d4857d448c90365faca5cab05d42a0
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f97796e96c394f849c6f3649e904b9faf39d0e79b859fd78f3d3707c2705a242
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fed0a5e77f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fed0a5e9ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685498844637543925, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2hhaWRlci9taW5jb25kYTMvdWJ1bnR1L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvaGFpZGVyL21pbmNvbmRhMy91YnVudHUvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5XnXPtTBRruAJw0/5XnXPtTBRruAJw0/5XnXPtTBRruAJw0/5XnXPtTBRruAJw0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAD7EXPpzgjb/30b4/QZudvbTelj+frq6/uPLaP52c6T1u64m/4h2zv0MJk79sfzO9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADledc+1MFGu4AnDT+tsnQ8MQ1Vuky9Jzzledc+1MFGu4AnDT+tsnQ8MQ1Vuky9Jzzledc+1MFGu4AnDT+tsnQ8MQ1Vuky9Jzzledc+1MFGu4AnDT+tsnQ8MQ1Vuky9JzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42085186 -0.00303279 0.551384 ]\n [ 0.42085186 -0.00303279 0.551384 ]\n [ 0.42085186 -0.00303279 0.551384 ]\n [ 0.42085186 -0.00303279 0.551384 ]]", "desired_goal": "[[ 0.14813636 -1.108417 1.4907826 ]\n [-0.07695628 1.1786714 -1.364704 ]\n [ 1.7105322 0.11406825 -1.0774972 ]\n [-1.3993495 -1.1487201 -0.04382269]]", "observation": "[[ 0.42085186 -0.00303279 0.551384 0.01493518 -0.00081273 0.010238 ]\n [ 0.42085186 -0.00303279 0.551384 0.01493518 -0.00081273 0.010238 ]\n [ 0.42085186 -0.00303279 0.551384 0.01493518 -0.00081273 0.010238 ]\n [ 0.42085186 -0.00303279 0.551384 0.01493518 -0.00081273 0.010238 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmcmKvf/OQj1fZoo+ur3LPDyN171waVI+0GbKvSNOjj1CC7s8WKA7vFqYy71m85M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06776733 0.04756069 0.27031228]\n [ 0.02487074 -0.10524985 0.20548034]\n [-0.09882891 0.06948497 0.02283252]\n [-0.0114518 -0.09941168 0.28896636]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEf5F0JiJGcCUhpRSlIwBbJRLMowBdJRHQJ5wIPmPo3d1fZQoaAZoCWgPQwhFZ5lFKHYMwJSGlFKUaBVLMmgWR0Ceb9FxGUfQdX2UKGgGaAloD0MIxFxStd0UE8CUhpRSlGgVSzJoFkdAnm+DfBN21XV9lChoBmgJaA9DCKrukc1V4xPAlIaUUpRoFUsyaBZHQJ5vNjvuw5h1fZQoaAZoCWgPQwhTz4JQ3pcVwJSGlFKUaBVLMmgWR0CecaUGmk30dX2UKGgGaAloD0MIHSJuTiWDD8CUhpRSlGgVSzJoFkdAnnFVqBVdX3V9lChoBmgJaA9DCE5FKowtpArAlIaUUpRoFUsyaBZHQJ5xB4qwyIp1fZQoaAZoCWgPQwgYzjXM0GgTwJSGlFKUaBVLMmgWR0CecLp9JBgNdX2UKGgGaAloD0MIL6TDQxhfBsCUhpRSlGgVSzJoFkdAnnNFnM+u/3V9lChoBmgJaA9DCLHEA8qmbBXAlIaUUpRoFUsyaBZHQJ5y9k5IYm91fZQoaAZoCWgPQwhCe/Xx0FcGwJSGlFKUaBVLMmgWR0CecqhOP/70dX2UKGgGaAloD0MIXknyXN8H+b+UhpRSlGgVSzJoFkdAnnJcB2fTTnV9lChoBmgJaA9DCLw9CAH5UhfAlIaUUpRoFUsyaBZHQJ502qcVgx91fZQoaAZoCWgPQwjURJ+PMgIMwJSGlFKUaBVLMmgWR0CedIr6+FlDdX2UKGgGaAloD0MIiUD1DyLZFMCUhpRSlGgVSzJoFkdAnnQ9C/oJRnV9lChoBmgJaA9DCAX8GkmC0AXAlIaUUpRoFUsyaBZHQJ5z78Q7LdN1fZQoaAZoCWgPQwgRrKqX38kMwJSGlFKUaBVLMmgWR0Cedmi7kGRndX2UKGgGaAloD0MI+kLIef8/CMCUhpRSlGgVSzJoFkdAnnYZDVpblnV9lChoBmgJaA9DCHnOFhBaLwjAlIaUUpRoFUsyaBZHQJ51yx4Y77t1fZQoaAZoCWgPQwjQ04BB0ucHwJSGlFKUaBVLMmgWR0CedX6wt8NQdX2UKGgGaAloD0MIt5c0RuuoD8CUhpRSlGgVSzJoFkdAnnf4P07KaHV9lChoBmgJaA9DCKshcY+lTwPAlIaUUpRoFUsyaBZHQJ53qXBxgiN1fZQoaAZoCWgPQwhdcAZ/v9gAwJSGlFKUaBVLMmgWR0Ced1tO2y9mdX2UKGgGaAloD0MIV12HakryFcCUhpRSlGgVSzJoFkdAnncOeJ53T3V9lChoBmgJaA9DCLq8OVyrXQnAlIaUUpRoFUsyaBZHQJ55egoPTXt1fZQoaAZoCWgPQwhW1cvvNBkNwJSGlFKUaBVLMmgWR0CeeSqc3EQ5dX2UKGgGaAloD0MI2v6VlSbFC8CUhpRSlGgVSzJoFkdAnnjccU/OdHV9lChoBmgJaA9DCDhr8L4qNwLAlIaUUpRoFUsyaBZHQJ54j4SHuZ11fZQoaAZoCWgPQwhVppiDoFMSwJSGlFKUaBVLMmgWR0CeevseXAuadX2UKGgGaAloD0MIh272B8pdE8CUhpRSlGgVSzJoFkdAnnqrtNSIg3V9lChoBmgJaA9DCJayDHGsaxTAlIaUUpRoFUsyaBZHQJ56XcfvF3p1fZQoaAZoCWgPQwgyyF2EKZoUwJSGlFKUaBVLMmgWR0CeehDB/I8ydX2UKGgGaAloD0MIJPHydK7oEsCUhpRSlGgVSzJoFkdAnnyF1SwW33V9lChoBmgJaA9DCK37x0J0iAXAlIaUUpRoFUsyaBZHQJ58NnanJkp1fZQoaAZoCWgPQwj8/s2LE/8GwJSGlFKUaBVLMmgWR0Cee+hH9WIXdX2UKGgGaAloD0MIlIjwL4LWG8CUhpRSlGgVSzJoFkdAnnubNjbzsnV9lChoBmgJaA9DCDC45o7+px3AlIaUUpRoFUsyaBZHQJ5+BxsEaEV1fZQoaAZoCWgPQwhVaCCWzTwOwJSGlFKUaBVLMmgWR0CefbeIVM24dX2UKGgGaAloD0MIPj22ZcD5D8CUhpRSlGgVSzJoFkdAnn1pYs/Y8XV9lChoBmgJaA9DCLni4qjchAzAlIaUUpRoFUsyaBZHQJ59HAFgUlB1fZQoaAZoCWgPQwh4Xio25lUMwJSGlFKUaBVLMmgWR0Cef4C/47A+dX2UKGgGaAloD0MIxCXHndKhFsCUhpRSlGgVSzJoFkdAnn8xCQcPv3V9lChoBmgJaA9DCNYcIJij1xfAlIaUUpRoFUsyaBZHQJ5+4yKvV3F1fZQoaAZoCWgPQwh2NuSfGSQTwJSGlFKUaBVLMmgWR0CefpXJHRTkdX2UKGgGaAloD0MIS8gHPZu1B8CUhpRSlGgVSzJoFkdAnoEXzUZvUHV9lChoBmgJaA9DCATLETKQ9xzAlIaUUpRoFUsyaBZHQJ6AyHck+ot1fZQoaAZoCWgPQwgiwr8IGrMMwJSGlFKUaBVLMmgWR0CegHtix3V1dX2UKGgGaAloD0MIMBAEyNDBEcCUhpRSlGgVSzJoFkdAnoAuc2BJ7XV9lChoBmgJaA9DCF/QQgJG9xfAlIaUUpRoFUsyaBZHQJ6CmcSXdCV1fZQoaAZoCWgPQwifyf55GlAPwJSGlFKUaBVLMmgWR0Cegkoq0+khdX2UKGgGaAloD0MINh5ssdtHGcCUhpRSlGgVSzJoFkdAnoH8STQmeHV9lChoBmgJaA9DCG5sdqT6jg/AlIaUUpRoFUsyaBZHQJ6BrzUZvUB1fZQoaAZoCWgPQwhWKqio+oUdwJSGlFKUaBVLMmgWR0CehB/I8yN5dX2UKGgGaAloD0MIwHebN05qDcCUhpRSlGgVSzJoFkdAnoPQPAfuC3V9lChoBmgJaA9DCAHAsWfPRQ7AlIaUUpRoFUsyaBZHQJ6DglE7W/d1fZQoaAZoCWgPQwi3Xz5ZMZwKwJSGlFKUaBVLMmgWR0CegzVWjoIOdX2UKGgGaAloD0MIesISDyhrGsCUhpRSlGgVSzJoFkdAnoXbyMDOknV9lChoBmgJaA9DCGAi3jr/hhLAlIaUUpRoFUsyaBZHQJ6FjEFW4mV1fZQoaAZoCWgPQwiJmX0eoxwVwJSGlFKUaBVLMmgWR0CehT9CNS62dX2UKGgGaAloD0MIKJmc2hk2GMCUhpRSlGgVSzJoFkdAnoTyKFZgX3V9lChoBmgJaA9DCMbdIForqhbAlIaUUpRoFUsyaBZHQJ6Ha1Vo6CF1fZQoaAZoCWgPQwjiI2JKJNEMwJSGlFKUaBVLMmgWR0CehxvWYnfEdX2UKGgGaAloD0MIc9U8R+QbDMCUhpRSlGgVSzJoFkdAnobN7F85S3V9lChoBmgJaA9DCK29T1WhKSDAlIaUUpRoFUsyaBZHQJ6GgMOPNml1fZQoaAZoCWgPQwj3zf3V424hwJSGlFKUaBVLMmgWR0CeiQI065oXdX2UKGgGaAloD0MICVBTy9ZiIcCUhpRSlGgVSzJoFkdAnoiyrxRVInV9lChoBmgJaA9DCFch5SfVngvAlIaUUpRoFUsyaBZHQJ6IZHww0wd1fZQoaAZoCWgPQwjVljrI69kgwJSGlFKUaBVLMmgWR0CeiBdjoZAIdX2UKGgGaAloD0MIrP9zmC/vCsCUhpRSlGgVSzJoFkdAnorJiVjZtnV9lChoBmgJaA9DCJT3cTRHZhPAlIaUUpRoFUsyaBZHQJ6KekAPuoh1fZQoaAZoCWgPQwisGoS53YsSwJSGlFKUaBVLMmgWR0CeiixYq5LAdX2UKGgGaAloD0MIN1X3yOZ6EMCUhpRSlGgVSzJoFkdAnonfPHDJl3V9lChoBmgJaA9DCKGCwwsiEgvAlIaUUpRoFUsyaBZHQJ6Mha5f+jx1fZQoaAZoCWgPQwjU8gNXeRIXwJSGlFKUaBVLMmgWR0CejDaKDTScdX2UKGgGaAloD0MIodtLGqO1DMCUhpRSlGgVSzJoFkdAnovpzxPO6nV9lChoBmgJaA9DCCMShZZ1fxDAlIaUUpRoFUsyaBZHQJ6LnSMLncN1fZQoaAZoCWgPQwjH8UOlEfMPwJSGlFKUaBVLMmgWR0CejjqH446wdX2UKGgGaAloD0MIyqSGNgC7CsCUhpRSlGgVSzJoFkdAno3rI91U2nV9lChoBmgJaA9DCOQs7GmHHxPAlIaUUpRoFUsyaBZHQJ6NnVEuxr11fZQoaAZoCWgPQwgV4SajyuAcwJSGlFKUaBVLMmgWR0CejVBInSfEdX2UKGgGaAloD0MIiQyreCPTDMCUhpRSlGgVSzJoFkdAno/UeMhounV9lChoBmgJaA9DCDEJF/IILgzAlIaUUpRoFUsyaBZHQJ6PhXlr/Kh1fZQoaAZoCWgPQwhCBvLs8m0MwJSGlFKUaBVLMmgWR0CejzelKsdUdX2UKGgGaAloD0MIilWDMLeLFMCUhpRSlGgVSzJoFkdAno7qzAvcrXV9lChoBmgJaA9DCF5lbVM8DgXAlIaUUpRoFUsyaBZHQJ6RgpG4I8h1fZQoaAZoCWgPQwiIKvwZ3hwQwJSGlFKUaBVLMmgWR0CekTM98qnWdX2UKGgGaAloD0MISKmEJ/TKHcCUhpRSlGgVSzJoFkdAnpDlmvnr6nV9lChoBmgJaA9DCJ1kq8spsRTAlIaUUpRoFUsyaBZHQJ6QmIZZSvV1fZQoaAZoCWgPQwiISbiQRxAOwJSGlFKUaBVLMmgWR0Cekxp2ll9SdX2UKGgGaAloD0MIZLFNKhrLCsCUhpRSlGgVSzJoFkdAnpLLFjurqHV9lChoBmgJaA9DCNwsXiwMIRbAlIaUUpRoFUsyaBZHQJ6SfSgGr0d1fZQoaAZoCWgPQwhnnlxTIHMGwJSGlFKUaBVLMmgWR0CekjASFoL5dX2UKGgGaAloD0MIeXO4VntoE8CUhpRSlGgVSzJoFkdAnpTiTpxFRnV9lChoBmgJaA9DCHPYfcfwqBXAlIaUUpRoFUsyaBZHQJ6Ukt8NQTF1fZQoaAZoCWgPQwjHoX4XtgYDwJSGlFKUaBVLMmgWR0CelETEzfrKdX2UKGgGaAloD0MIXFSLiGISDMCUhpRSlGgVSzJoFkdAnpP4mb9ZR3V9lChoBmgJaA9DCAAAAAAAQBbAlIaUUpRoFUsyaBZHQJ6Wr9UCJXR1fZQoaAZoCWgPQwjUgaynVu8YwJSGlFKUaBVLMmgWR0CelmDzRQaadX2UKGgGaAloD0MI8x/Sb1+HFsCUhpRSlGgVSzJoFkdAnpYTN+so2HV9lChoBmgJaA9DCO4ljdE6SgTAlIaUUpRoFUsyaBZHQJ6Vxlbu+h51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (837 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.7002599175903015, "std_reward": 1.3689686705111104, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-31T15:20:14.772078"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd3b627de2d53041aeb8cac324fb7c4c48e546b01aea25a67c58f6624e731acf
|
3 |
+
size 3117
|