File size: 12,468 Bytes
d4b964f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import gc
import glob
from multiprocessing import Pool
import time
from tqdm import tqdm
import torch
from safetensors.torch import load_file
from diffusers import FluxTransformer2DModel, FluxPipeline
from huggingface_hub import snapshot_download
from PIL import Image
# Configuration
DEVICE = torch.device("cpu")
# If True, uses pipeline.enable_sequential_cpu_offload(). Make sure device is CPU.
USE_CPU_OFFLOAD = True
DTYPE = torch.bfloat16
NUM_WORKERS = 1
SEED = 0
IMAGE_WIDTH = 880 # 688
IMAGE_HEIGHT = 656 # 512
PROMPTS = [
"a tiny astronaut hatching from an egg on the moon",
#"photo of a female cyberpunk hacker, plugged in and hacking, far future, neon lights"
'photo of a man on a beach holding a sign that says "Premature optimization is the root of all evil - test your shit!"'
]
STEP_COUNTS = [4, 8, 16, 32, 50]
MERGE_RATIOS = [
# (1, 0), (4, 1), (3, 1), (2, 1), (1, 1), (1, 2), (1, 3), (1, 4), (0, 1)
(1, 0), (12, 1), (10, 1), (7, 1), (5.5, 1), (4, 1), (3.5, 1), (3, 1), (2.5, 1), (2, 1), (1.5, 1), (0, 1)
]
MERGE_LABELS = [
# "Pure Schnell", "4:1", "3:1", "2:1", "1:1 Merge", "1:2", "1:3", "1:4", "Pure Dev"
"Pure Schnell", "12:1", "10:1", "7:1", "5.5:1", "4:1", "3.5:1", "3:1", "2.5:1", "2:1", "1.5:1", "Pure Dev"
]
assert len(MERGE_RATIOS) == len(MERGE_LABELS)
# Output directories
IMAGE_OUTPUT_DIR = "./outputs"
MODEL_OUTPUT_DIR = "./merged_models"
SAVE_MODELS = False
os.makedirs(IMAGE_OUTPUT_DIR, exist_ok=True)
# Utility function for cleanup
def cleanup():
gc.collect()
torch.cuda.empty_cache()
# Start timing
start_time = time.time()
def merge_models(dev_shards, schnell_shards, ratio):
schnell_weight, dev_weight = ratio
total_weight = schnell_weight + dev_weight
merged_state_dict = {}
guidance_state_dict = {}
for i in tqdm(range(len(dev_shards)), "Processing shards...", dynamic_ncols=True):
state_dict_dev = load_file(dev_shards[i])
state_dict_schnell = load_file(schnell_shards[i])
keys = list(state_dict_dev.keys())
for k in tqdm(keys, f"\tProcessing keys of shard {i}...", dynamic_ncols=True):
if "guidance" not in k:
merged_state_dict[k] = (
state_dict_schnell[k] * schnell_weight +
state_dict_dev[k] * dev_weight
) / total_weight
else:
guidance_state_dict[k] = state_dict_dev[k]
merged_state_dict.update(guidance_state_dict)
return merged_state_dict
# Function to create merged model
def create_merged_model(dev_ckpt, schnell_ckpt, ratio):
config = FluxTransformer2DModel.load_config("black-forest-labs/FLUX.1-dev", subfolder="transformer")
model = FluxTransformer2DModel.from_config(config)
dev_shards = sorted(glob.glob(f"{dev_ckpt}/transformer/*.safetensors"))
schnell_shards = sorted(glob.glob(f"{schnell_ckpt}/transformer/*.safetensors"))
merged_state_dict = merge_models(dev_shards, schnell_shards, ratio)
model.load_state_dict(merged_state_dict)
del merged_state_dict
cleanup()
return model.to(DTYPE)
def generate_image(pipeline, prompt, num_steps, output_path):
if not os.path.exists(output_path):
# Params:
# prompt β The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.
# prompt_2 β The prompt or prompts to be sent to tokenizer_2 and text_encoder_2. If not defined, prompt is will be used instead
# height β The height in pixels of the generated image. This is set to 1024 by default for the best results.
# width β The width in pixels of the generated image. This is set to 1024 by default for the best results.
# num_inference_steps β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
# timesteps β Custom timesteps to use for the denoising process with schedulers which support a timesteps argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used. Must be in descending order.
# guidance_scale β Guidance scale as defined in [Classifier-Free Diffusion Guidance](https:// arxiv. org/ abs/ 2207.12598 ). guidance_scale is defined as w of equation 2. of [Imagen Paper](https:// arxiv. org/ pdf/ 2205.11487.pdf ). Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.
# num_images_per_prompt β The number of images to generate per prompt.
# generator β One or a list of [torch generator(s)](https:// pytorch. org/ docs/ stable/ generated/ torch. Generator. html ) to make generation deterministic.
# latents β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.
# prompt_embeds β Pre-generated text embeddings. Can be used to easily tweak text inputs, e. g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.
# pooled_prompt_embeds β Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e. g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.
# output_type β The output format of the generate image. Choose between [PIL](https:// pillow. readthedocs. io/ en/ stable/ ): PIL. Image. Image or np. array.
# return_dict β Whether or not to return a [~pipelines. flux. FluxPipelineOutput] instead of a plain tuple.
# joint_attention_kwargs β A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self. processor in [diffusers. models. attention_processor](https:// github. com/ huggingface/ diffusers/ blob/ main/ src/ diffusers/ models/ attention_processor. py ).
# callback_on_step_end β A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.
# callback_on_step_end_tensor_inputs β The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.
# max_sequence_length β Maximum sequence length to use with the prompt.
# Returns:
# [~pipelines. flux. FluxPipelineOutput] if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images.
image = pipeline(
prompt=prompt,
guidance_scale=3.5,
num_inference_steps=num_steps,
height=IMAGE_HEIGHT,
width=IMAGE_WIDTH,
max_sequence_length=512,
generator=torch.manual_seed(SEED),
).images[0]
image.save(output_path)
else:
print("Image already exists, skipping...")
def process_model(ratio, label, dev_ckpt, schnell_ckpt):
image_output_dir = os.path.join(IMAGE_OUTPUT_DIR, label.replace(":", "_"))
os.makedirs(image_output_dir, exist_ok=True)
existing_images = len([name for name in os.listdir(image_output_dir) if os.path.isfile(os.path.join(image_output_dir, name))])
if existing_images == len(PROMPTS) * len(STEP_COUNTS):
print(f"\nModel {label} already complete, skipping...")
return
else:
print(f"\nProcessing {label} model...")
if ratio == (1, 0): # Pure Schnell
model = FluxTransformer2DModel.from_pretrained(schnell_ckpt, subfolder="transformer", torch_dtype=DTYPE)
elif ratio == (0, 1): # Pure Dev
model = FluxTransformer2DModel.save_pretrained().from_pretrained(dev_ckpt, subfolder="transformer", torch_dtype=DTYPE)
else:
model = create_merged_model(dev_ckpt, schnell_ckpt, ratio)
if SAVE_MODELS:
model_output_dir = os.path.join(MODEL_OUTPUT_DIR, label.replace(":", "_"))
print(f"Saving model to {model_output_dir}...")
model.save_pretrained(model_output_dir, max_shared_size="50GB", safe_serialization=True)
pipeline = FluxPipeline.from_pretrained(
dev_ckpt,
transformer=model,
torch_dtype=DTYPE,
).to(DEVICE)
if USE_CPU_OFFLOAD:
pipeline.enable_sequential_cpu_offload()
#pipeline.enable_xformers_memory_efficient_attention()
for prompt_idx, prompt in enumerate(PROMPTS):
for step_count in STEP_COUNTS:
output_path = os.path.join(
image_output_dir,
f"prompt{prompt_idx + 1}_steps{step_count}.png"
)
generate_image(pipeline, prompt, step_count, output_path)
del pipeline
del model
cleanup()
def main():
dev_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-dev", ignore_patterns=["flux1-dev.sft","flux1-dev.safetensors"],
local_dir="./models/dev/")
schnell_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-schnell", allow_patterns="transformer/*",
local_dir="./models/schnell/")
with Pool(NUM_WORKERS) as pool:
results = [
pool.apply_async(
process_model,
(ratio, label, dev_ckpt, schnell_ckpt)
)
for ratio, label in zip(MERGE_RATIOS, MERGE_LABELS)
]
for result in tqdm(results):
result.get() # This will block until the result is ready
pool.close()
pool.join()
def create_image_grid(image_paths, output_path, padding=10):
width = IMAGE_WIDTH // 2
height = IMAGE_HEIGHT // 2
images = [Image.open(path).resize((width, height)) for path in image_paths]
grid_cols = len(MERGE_RATIOS)
grid_rows = len(STEP_COUNTS)
top_pad = 250
left_pad = 200
grid_width = (width * grid_cols) + (padding * (grid_cols + 1)) + left_pad
grid_height = (height * grid_rows) + (padding * (grid_rows + 1)) + top_pad
grid_image = Image.new('RGB', (grid_width, grid_height), color=(255, 255, 255))
for idx, img in enumerate(images):
row = idx // grid_cols
col = idx % grid_cols
x_position = (col * width) + (padding * (col + 1)) + left_pad
y_position = (row * height) + (padding * (row + 1)) + top_pad
grid_image.paste(img, (x_position, y_position))
grid_image.save(output_path)
# Run the main process
main()
# Create the image grids
print("Creating image comparison grid...")
# Reconstruct the image paths
all_image_paths = [
os.path.join(
IMAGE_OUTPUT_DIR,
label.replace(":", "_"),
f"prompt{prompt_idx + 1}_steps{step_count}.png"
)
for prompt_idx in range(len(PROMPTS))
for step_count in STEP_COUNTS
for label in MERGE_LABELS
]
missing_images = [path for path in all_image_paths if not os.path.exists(path)]
if missing_images:
print(f"Warning: {len(missing_images)} images were not generated:")
for path in missing_images[:5]: # Show first 5
print(f" β’ {path}")
if len(missing_images) > 5:
print(f" (and {len(missing_images) - 5} more...)")
# Create grid images
for prompt_idx in range(len(PROMPTS)):
prompt_images = [path for path in all_image_paths if f"prompt{prompt_idx + 1}" in path]
grid_output_path = os.path.join(IMAGE_OUTPUT_DIR, f"grid_prompt{prompt_idx + 1}.png")
create_image_grid(prompt_images, grid_output_path)
# Final report
end_time = time.time()
total_time = end_time - start_time
num_images = len(all_image_paths)
print(f"\nProcessing complete!")
print(f"Total time: {total_time:.2f} seconds")
print(f"Total images generated: {num_images}")
print(f"Average time per image: {total_time / num_images:.2f} seconds")
print(f"Output directory: {IMAGE_OUTPUT_DIR}")
|