File size: 6,614 Bytes
0955f14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
"""
Sample from a trained model
"""
import os
import pickle
from contextlib import nullcontext
import torch
import tiktoken
from nanogpt.model import GPTConfig, GPT
BASE_DIR = "nanogpt/"
class NanoGptPlayer:
def __init__(self, model_name: str, move_num_in_gamestate: bool=False):
self.model_name = model_name
# -----------------------------------------------------------------------------
init_from = "resume" # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
out_dir = "out" # ignored if init_from is not 'resume'
input_dir = "addition"
test_name = "test.txt"
start = "12+44=" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt"
num_samples = 1 # number of samples to draw
max_new_tokens = 6 # number of tokens generated in each sample
temperature = 0.01 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
seed = 1337
device = "cuda" # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
#device = "cpu"
dtype = "float16" # 'float32' or 'bfloat16' or 'float16'
compile = False # use PyTorch 2.0 to compile the model to be faster
exec(
open(f"{BASE_DIR}configurator.py").read()
) # overrides from command line or config file
# -----------------------------------------------------------------------------
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = (
"cuda" if "cuda" in device else "cpu"
) # for later use in torch.autocast
ptdtype = {
"float32": torch.float32,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
}[dtype]
ctx = (
nullcontext()
if device_type == "cpu"
else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
)
# model
if init_from == "resume":
# init from a model saved in a specific directory
#ckpt_path = os.path.join(BASE_DIR, out_dir, self.model_name)
ckpt_path = os.path.normpath(f"../chess-mamba-vs-xformer/out/Xformer/{self.model_name}")
checkpoint = torch.load(ckpt_path, map_location=device)
gptconf = GPTConfig(**checkpoint["model_args"])
model = GPT(gptconf)
#model = GPT(checkpoint["model_args"])
state_dict = checkpoint["model"]
unwanted_prefix = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
model.load_state_dict(state_dict)
elif init_from.startswith("gpt2"):
# init from a given GPT-2 model
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
model.eval()
model.to(device)
if compile:
model = torch.compile(model) # requires PyTorch 2.0 (optional)
# look for the meta pickle in case it is available in the dataset folder
meta_path = os.path.join(BASE_DIR, "out", "meta.pkl")
load_meta = os.path.exists(meta_path)
if move_num_in_gamestate and load_meta:
with open(meta_path, "rb") as f:
meta = pickle.load(f)
stoi, itos = meta["stoi"], meta["itos"]
vocab_size = meta['vocab_size']
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: "".join([itos[i] for i in l])
else:
stoi = {' ': 0, '.': 1, 'a': 2, 'b': 3, 'c': 4, 'd': 5, 'e': 6, 'f': 7, 'g': 8, 'h': 9, '1': 10, '2': 11, '3': 12, '4': 13, '5': 14, '6': 15, '7': 16, '8': 17, 'B': 18, 'N': 19, 'R': 20, 'Q': 21, 'K': 22, 'O': 23, 'x': 24, '+': 25, '#': 26, '=': 27}
itos = {0: ' ', 1: '.', 2: 'a', 3: 'b', 4: 'c', 5: 'd', 6: 'e', 7: 'f', 8: 'g', 9: 'h', 10: '1', 11: '2', 12: '3', 13: '4', 14: '5', 15: '6', 16: '7', 17: '8', 18: 'B', 19: 'N', 20: 'R', 21: 'Q', 22: 'K', 23: 'O', 24: 'x', 25: '+', 26: '#', 27: '='}
for s in stoi:
assert itos[stoi[s]] == s
vocab_size = len(stoi)
print(f"Vocab size {vocab_size}")
encode = lambda s: [stoi[c] for c in s.replace('-', '')]
decode = lambda l: "".join([itos[i] for i in l if i < vocab_size]).replace("OOO", "O-O-O").replace("OO", "O-O")
self.encode = encode
self.decode = decode
self.model = model
self.ctx = ctx
self.device = device
def get_nanogpt_response(self, game_state: str, temperature: float) -> str:
num_samples = 1 # number of samples to draw
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
max_new_tokens = 8
# Remove ["stockfish elo xxx"]\n["stockfish elo xxx"]\n\n from game_state
# nanogpt was trained only on pgn transcripts
game_state = game_state.split("\n\n")[-1].strip()
# print("game_state", game_state)
#game_state = ";" + game_state
start_ids = self.encode(game_state)
x = torch.tensor(start_ids, dtype=torch.long, device=self.device)[None, ...]
with torch.no_grad():
with self.ctx:
for k in range(num_samples):
y = self.model.generate(
x, max_new_tokens, temperature=temperature, top_k=top_k
)
model_response = self.decode(y[0].tolist())
# print("model_response", model_response)
# model_response includes the input string
model_response = model_response[len(game_state):].split(";")[0]
return model_response
def get_move_from_response(self, response: str) -> str:
try:
# Parse the response to get only the first move
moves = response.split()
first_move = moves[0]
return first_move
except:
return None
def get_move(self, board: str, game_state: str, temperature: float) -> str:
completion = self.get_nanogpt_response(game_state, temperature)
return self.get_move_from_response(completion)
def get_config(self) -> dict:
return {"model": self.model_name}
|