File size: 1,734 Bytes
0955f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "def load_checkpoint(filepath: str) -> dict:\n",
    "    \"\"\"\n",
    "    Load a checkpoint file.\n",
    "\n",
    "    Args:\n",
    "    filepath (str): Path to the .ckpt file.\n",
    "\n",
    "    Returns:\n",
    "    dict: Contents of the checkpoint file.\n",
    "    \"\"\"\n",
    "    checkpoint = torch.load(filepath, map_location=torch.device('cpu'))\n",
    "    return checkpoint\n",
    "\n",
    "checkpoint_path = 'ckpt.pt'\n",
    "checkpoint_data = load_checkpoint(checkpoint_path)\n",
    "\n",
    "# Print the keys to understand what's inside\n",
    "print(checkpoint_data.keys())\n",
    "\n",
    "# If you want to view specific information, access it using the keys\n",
    "# For example, to view the model's state_dict\n",
    "model_state = checkpoint_data.get('state_dict', None)\n",
    "if model_state:\n",
    "    print(\"Model's state dict:\", model_state)\n",
    "\n",
    "# To view training information like current learning rate, iterations, etc.\n",
    "training_info = checkpoint_data.get('training_info', None)\n",
    "if training_info:\n",
    "    print(\"Training Info:\", training_info)\n",
    "\n",
    "# To view config, if it's stored in the checkpoint\n",
    "config = checkpoint_data.get('config', None)\n",
    "if config:\n",
    "    print(\"Configurations:\", config)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "openai",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "name": "python",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}