HaileyStorm's picture
Upload chess-mamba-vs-xformer/mamba_lm.py with huggingface_hub
b32cef0 verified
raw
history blame
6.41 kB
from dataclasses import dataclass, fields, asdict
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
#from mamba import Mamba, MambaConfig, RMSNorm
from mamba_ssm import MambaLMHeadModel
from mamba_ssm.models.config_mamba import MambaConfig
from mamba_ssm.ops.triton.layernorm import RMSNorm
"""
Encapsulates a Mamba model as language model. It has an embedding layer, and a LM head which maps the model output to logits.
"""
# TODO generate function : batch size != 1 ? (for now B=1)
# TODO generate function : top-p sampling
@dataclass
class MambaLMConfig(MambaConfig):
vocab_size: int = 32000
pad_vocab_size_multiple: int = 8
def __post_init__(self):
pass
#super().__post_init__()
#if self.vocab_size % self.pad_vocab_size_multiple != 0:
# self.vocab_size += (self.pad_vocab_size_multiple - self.vocab_size % self.pad_vocab_size_multiple)
def to_mamba_config(self) -> MambaConfig:
#mamba_config_fields = {field.name for field in fields(MambaConfig)}
#print(mamba_config_fields)
#filtered_dict = {k: v for k, v in asdict(self).items() if k in mamba_config_fields}
#return MambaConfig(**filtered_dict)
return MambaConfig(d_model=self.d_model, n_layer=self.n_layer, vocab_size=self.vocab_size, ssm_cfg=self.ssm_cfg)
# adapted from https://github.com/johnma2006/mamba-minimal
def from_pretrained(name: str):
"""
Returns a model loaded with pretrained weights pulled from HuggingFace.
Args:
name: As of now, supports
* 'state-spaces/mamba-2.8b-slimpj'
* 'state-spaces/mamba-2.8b'
* 'state-spaces/mamba-1.4b'
* 'state-spaces/mamba-790m'
* 'state-spaces/mamba-370m'
* 'state-spaces/mamba-130m'
Returns:
model: a Mamba model configured with the proper parameters and initialized with the proper weights
"""
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
from transformers.utils.hub import cached_file
def load_config_hf(model_name):
resolved_archive_file = cached_file(model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False)
return json.load(open(resolved_archive_file))
def load_state_dict_hf(model_name):
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True)
# copy config data
config_data = load_config_hf(name)
config = MambaLMConfig(d_model=config_data['d_model'], n_layers=config_data['n_layer'], vocab_size=config_data['vocab_size'])
#model = MambaLM(config)
model = MambaLMHeadModel(config)
# copy weights
state_dict = load_state_dict_hf(name)
new_state_dict = {}
for key in state_dict:
if key == 'backbone.embedding.weight' or key == 'backbone.norm_f.weight':
new_key = key.replace('backbone.', '')
else:
new_key = key.replace('backbone', 'mamba')
new_state_dict[new_key] = state_dict[key]
model.load_state_dict(new_state_dict)
return model
class MambaLM(nn.Module):
def __init__(self, lm_config: MambaLMConfig):
super().__init__()
self.lm_config = lm_config
self.config = lm_config.to_mamba_config()
self.embedding = nn.Embedding(self.lm_config.vocab_size, self.config.d_model)
self.mamba = Mamba(**self.config.__dict__)
self.norm_f = RMSNorm(self.config.d_model)
self.lm_head = nn.Linear(self.config.d_model, self.lm_config.vocab_size, bias=False)
self.lm_head.weight = self.embedding.weight
def forward(self, tokens):
# tokens : (B, L)
# logits : (B, L, vocab_size)
x = self.embedding(tokens)
x = self.mamba(x)
x = self.norm_f(x)
logits = self.lm_head(x)
return logits
def step(self, token, caches):
# token : (B)
# caches : [cache(layer) for all layers], cache : (h, inputs)
# logits : (B, vocab_size)
# caches : [cache(layer) for all layers], cache : (h, inputs)
x = self.embedding(token)
x, caches = self.mamba.step(x, caches)
x = self.norm_f(x)
logits = self.lm_head(x)
return logits, caches
# TODO temperature
# TODO process prompt in parallel, and pass in sequential mode when prompt is finished ?
def generate(self, tokenizer, prompt: str, num_tokens: int = 50, sample: bool = True, top_k: int = 40):
self.eval()
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(next(self.parameters()).device) # (1, num_tokens)
# caches is a list of cache, one per layer
# cache is composed of : the hidden state, and the last d_conv-1 inputs
# the hidden state because the update is like an RNN
# the last d_conv-1 inputs because they are used in a 1d convolution (usually d_conv=4 so this is not large)
caches = [(None, torch.zeros(1, self.config.d_inner, self.config.d_conv-1, device=input_ids.device)) for _ in range(self.config.n_layers)]
for i in range(input_ids.size(1) + num_tokens - 1):
with torch.no_grad():
# forward the new output, get new cache
next_token_logits, caches = self.step(input_ids[:, i], caches) # (1, vocab_size), caches
# sample (no sampling when the prompt is being processed)
if i+1 >= input_ids.size(1):
probs = F.softmax(next_token_logits, dim=-1) # (1, vocab_size)
if top_k is not None:
values, _ = torch.topk(probs, k=top_k) # (1, k) ordered from lowest to biggest
probs[probs < values[:, -1, None]] = 0
probs = probs / probs.sum(axis=1, keepdims=True)
if sample:
next_token = torch.multinomial(probs, num_samples=1).squeeze(1) # (1)
else:
next_token = torch.argmax(probs, dim=-1) # (1)
input_ids = torch.cat([input_ids, next_token.unsqueeze(1)], dim=1)
output = [tokenizer.decode(output.tolist()) for output in input_ids][0]
self.train()
return output