""" Sample from a trained model """ import os import pickle from contextlib import nullcontext import torch import tiktoken from nanogpt.model import GPTConfig, GPT BASE_DIR = "nanogpt/" class NanoGptPlayer: def __init__(self, model_name: str, move_num_in_gamestate: bool=False): self.model_name = model_name # ----------------------------------------------------------------------------- init_from = "resume" # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl') out_dir = "out" # ignored if init_from is not 'resume' input_dir = "addition" test_name = "test.txt" start = "12+44=" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt" num_samples = 1 # number of samples to draw max_new_tokens = 6 # number of tokens generated in each sample temperature = 0.01 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability seed = 1337 device = "cuda" # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. #device = "cpu" dtype = "float16" # 'float32' or 'bfloat16' or 'float16' compile = False # use PyTorch 2.0 to compile the model to be faster exec( open(f"{BASE_DIR}configurator.py").read() ) # overrides from command line or config file # ----------------------------------------------------------------------------- torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn device_type = ( "cuda" if "cuda" in device else "cpu" ) # for later use in torch.autocast ptdtype = { "float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16, }[dtype] ctx = ( nullcontext() if device_type == "cpu" else torch.amp.autocast(device_type=device_type, dtype=ptdtype) ) # model if init_from == "resume": # init from a model saved in a specific directory #ckpt_path = os.path.join(BASE_DIR, out_dir, self.model_name) ckpt_path = os.path.normpath(f"../chess-mamba-vs-xformer/out/Xformer/{self.model_name}") checkpoint = torch.load(ckpt_path, map_location=device) #gptconf = GPTConfig(**checkpoint["model_args"]) #model = GPT(gptconf) model = GPT(checkpoint["model_args"]) state_dict = checkpoint["model"] unwanted_prefix = "_orig_mod." for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k) model.load_state_dict(state_dict) elif init_from.startswith("gpt2"): # init from a given GPT-2 model model = GPT.from_pretrained(init_from, dict(dropout=0.0)) model.eval() model.to(device) if compile: model = torch.compile(model) # requires PyTorch 2.0 (optional) # look for the meta pickle in case it is available in the dataset folder meta_path = os.path.join(BASE_DIR, "out", "meta.pkl") load_meta = os.path.exists(meta_path) if move_num_in_gamestate and load_meta: with open(meta_path, "rb") as f: meta = pickle.load(f) stoi, itos = meta["stoi"], meta["itos"] vocab_size = meta['vocab_size'] encode = lambda s: [stoi[c] for c in s] decode = lambda l: "".join([itos[i] for i in l]) else: stoi = {' ': 0, '.': 1, 'a': 2, 'b': 3, 'c': 4, 'd': 5, 'e': 6, 'f': 7, 'g': 8, 'h': 9, '1': 10, '2': 11, '3': 12, '4': 13, '5': 14, '6': 15, '7': 16, '8': 17, 'B': 18, 'N': 19, 'R': 20, 'Q': 21, 'K': 22, 'O': 23, 'x': 24, '+': 25, '#': 26, '=': 27} itos = {0: ' ', 1: '.', 2: 'a', 3: 'b', 4: 'c', 5: 'd', 6: 'e', 7: 'f', 8: 'g', 9: 'h', 10: '1', 11: '2', 12: '3', 13: '4', 14: '5', 15: '6', 16: '7', 17: '8', 18: 'B', 19: 'N', 20: 'R', 21: 'Q', 22: 'K', 23: 'O', 24: 'x', 25: '+', 26: '#', 27: '='} for s in stoi: assert itos[stoi[s]] == s vocab_size = len(stoi) print(f"Vocab size {vocab_size}") encode = lambda s: [stoi[c] for c in s.replace('-', '')] decode = lambda l: "".join([itos[i] for i in l]).replace("OOO", "O-O-O").replace("OO", "O-O") self.encode = encode self.decode = decode self.model = model self.ctx = ctx self.device = device def get_nanogpt_response(self, game_state: str, temperature: float) -> str: num_samples = 1 # number of samples to draw top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability max_new_tokens = 8 # Remove ["stockfish elo xxx"]\n["stockfish elo xxx"]\n\n from game_state # nanogpt was trained only on pgn transcripts game_state = game_state.split("\n\n")[-1].strip() # print("game_state", game_state) #game_state = ";" + game_state start_ids = self.encode(game_state) x = torch.tensor(start_ids, dtype=torch.long, device=self.device)[None, ...] with torch.no_grad(): with self.ctx: for k in range(num_samples): y = self.model.generate( x, max_new_tokens, temperature=temperature, top_k=top_k ) model_response = self.decode(y[0].tolist()) # print("model_response", model_response) # model_response includes the input string model_response = model_response[len(game_state):].split(";")[0] return model_response def get_move_from_response(self, response: str) -> str: # Parse the response to get only the first move moves = response.split() first_move = moves[0] return first_move def get_move(self, board: str, game_state: str, temperature: float) -> str: completion = self.get_nanogpt_response(game_state, temperature) return self.get_move_from_response(completion) def get_config(self) -> dict: return {"model": self.model_name}