File size: 8,509 Bytes
4eba019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3725
- Answer: {'precision': 0.07982261640798226, 'recall': 0.08899876390605686, 'f1': 0.0841613091759205, 'number': 809}
- Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
- Question: {'precision': 0.4174242424242424, 'recall': 0.5173708920187794, 'f1': 0.46205450733752623, 'number': 1065}
- Overall Precision: 0.2804
- Overall Recall: 0.3126
- Overall F1: 0.2956
- Overall Accuracy: 0.5437

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                          | Header                                                      | Question                                                                                                      | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.8773        | 1.0   | 10   | 1.8489          | {'precision': 0.00547645125958379, 'recall': 0.006180469715698393, 'f1': 0.005807200929152149, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.04874446085672083, 'recall': 0.030985915492957747, 'f1': 0.03788748564867968, 'number': 1065} | 0.0227            | 0.0191         | 0.0207     | 0.2819           |
| 1.807         | 2.0   | 20   | 1.7831          | {'precision': 0.005925925925925926, 'recall': 0.004944375772558714, 'f1': 0.005390835579514824, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.06716417910447761, 'recall': 0.03380281690140845, 'f1': 0.04497189256714553, 'number': 1065}  | 0.0327            | 0.0201         | 0.0249     | 0.2996           |
| 1.7516        | 3.0   | 30   | 1.7272          | {'precision': 0.0071633237822349575, 'recall': 0.006180469715698393, 'f1': 0.006635700066357001, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.10175438596491228, 'recall': 0.054460093896713614, 'f1': 0.0709480122324159, 'number': 1065}  | 0.0496            | 0.0316         | 0.0386     | 0.3189           |
| 1.7057        | 4.0   | 40   | 1.6785          | {'precision': 0.012626262626262626, 'recall': 0.012360939431396786, 'f1': 0.012492192379762648, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.16886930983847284, 'recall': 0.107981220657277, 'f1': 0.13172966781214204, 'number': 1065}    | 0.0849            | 0.0627         | 0.0721     | 0.3426           |
| 1.6571        | 5.0   | 50   | 1.6336          | {'precision': 0.016286644951140065, 'recall': 0.018541409147095178, 'f1': 0.017341040462427744, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2211764705882353, 'recall': 0.17652582159624414, 'f1': 0.19634464751958225, 'number': 1065}   | 0.1146            | 0.1019         | 0.1079     | 0.3714           |
| 1.6219        | 6.0   | 60   | 1.5894          | {'precision': 0.03238095238095238, 'recall': 0.042027194066749075, 'f1': 0.036578805809575045, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.26129666011787817, 'recall': 0.24976525821596243, 'f1': 0.2554008641382621, 'number': 1065}   | 0.1451            | 0.1505         | 0.1477     | 0.4028           |
| 1.5748        | 7.0   | 70   | 1.5484          | {'precision': 0.03796296296296296, 'recall': 0.05067985166872682, 'f1': 0.04340921122286924, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.28073394495412846, 'recall': 0.28732394366197184, 'f1': 0.28399071925754066, 'number': 1065}  | 0.1599            | 0.1741         | 0.1667     | 0.4319           |
| 1.5387        | 8.0   | 80   | 1.5098          | {'precision': 0.044036697247706424, 'recall': 0.059332509270704575, 'f1': 0.05055292259083728, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.30583333333333335, 'recall': 0.34460093896713617, 'f1': 0.3240618101545254, 'number': 1065}   | 0.1812            | 0.2082         | 0.1938     | 0.4623           |
| 1.5004        | 9.0   | 90   | 1.4753          | {'precision': 0.05149812734082397, 'recall': 0.06798516687268233, 'f1': 0.05860415556739478, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3378812199036918, 'recall': 0.39530516431924884, 'f1': 0.36434443963652097, 'number': 1065}   | 0.2057            | 0.2388         | 0.2210     | 0.4887           |
| 1.4659        | 10.0  | 100  | 1.4462          | {'precision': 0.058823529411764705, 'recall': 0.0754017305315204, 'f1': 0.06608884073672806, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3586530931871574, 'recall': 0.4300469483568075, 'f1': 0.39111870196413323, 'number': 1065}    | 0.2243            | 0.2604         | 0.2410     | 0.5046           |
| 1.4314        | 11.0  | 110  | 1.4207          | {'precision': 0.06769230769230769, 'recall': 0.0815822002472188, 'f1': 0.07399103139013452, 'number': 809}      | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.38271604938271603, 'recall': 0.46572769953051646, 'f1': 0.42016094875052945, 'number': 1065}  | 0.2475            | 0.2820         | 0.2636     | 0.5184           |
| 1.4242        | 12.0  | 120  | 1.4003          | {'precision': 0.07203389830508475, 'recall': 0.08405438813349815, 'f1': 0.0775812892184826, 'number': 809}      | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.40076628352490423, 'recall': 0.49107981220657276, 'f1': 0.4413502109704641, 'number': 1065}   | 0.2628            | 0.2965         | 0.2786     | 0.5273           |
| 1.3939        | 13.0  | 130  | 1.3855          | {'precision': 0.07792207792207792, 'recall': 0.08899876390605686, 'f1': 0.0830929024812464, 'number': 809}      | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.40953822861468586, 'recall': 0.507981220657277, 'f1': 0.45347862531433364, 'number': 1065}    | 0.2731            | 0.3076         | 0.2893     | 0.5367           |
| 1.3837        | 14.0  | 140  | 1.3764          | {'precision': 0.08021978021978023, 'recall': 0.09023485784919653, 'f1': 0.08493310063990692, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.41635124905374715, 'recall': 0.5164319248826291, 'f1': 0.4610226320201173, 'number': 1065}    | 0.2792            | 0.3126         | 0.2950     | 0.5410           |
| 1.3603        | 15.0  | 150  | 1.3725          | {'precision': 0.07982261640798226, 'recall': 0.08899876390605686, 'f1': 0.0841613091759205, 'number': 809}      | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4174242424242424, 'recall': 0.5173708920187794, 'f1': 0.46205450733752623, 'number': 1065}    | 0.2804            | 0.3126         | 0.2956     | 0.5437           |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3