Haios141 commited on
Commit
a8f71d2
·
1 Parent(s): d7d02a6

End of training

Browse files
README.md CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 1.3725
20
- - Answer: {'precision': 0.07982261640798226, 'recall': 0.08899876390605686, 'f1': 0.0841613091759205, 'number': 809}
21
  - Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
22
- - Question: {'precision': 0.4174242424242424, 'recall': 0.5173708920187794, 'f1': 0.46205450733752623, 'number': 1065}
23
- - Overall Precision: 0.2804
24
- - Overall Recall: 0.3126
25
- - Overall F1: 0.2956
26
- - Overall Accuracy: 0.5437
27
 
28
  ## Model description
29
 
@@ -52,28 +52,28 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 1.8773 | 1.0 | 10 | 1.8489 | {'precision': 0.00547645125958379, 'recall': 0.006180469715698393, 'f1': 0.005807200929152149, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.04874446085672083, 'recall': 0.030985915492957747, 'f1': 0.03788748564867968, 'number': 1065} | 0.0227 | 0.0191 | 0.0207 | 0.2819 |
58
- | 1.807 | 2.0 | 20 | 1.7831 | {'precision': 0.005925925925925926, 'recall': 0.004944375772558714, 'f1': 0.005390835579514824, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.06716417910447761, 'recall': 0.03380281690140845, 'f1': 0.04497189256714553, 'number': 1065} | 0.0327 | 0.0201 | 0.0249 | 0.2996 |
59
- | 1.7516 | 3.0 | 30 | 1.7272 | {'precision': 0.0071633237822349575, 'recall': 0.006180469715698393, 'f1': 0.006635700066357001, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.10175438596491228, 'recall': 0.054460093896713614, 'f1': 0.0709480122324159, 'number': 1065} | 0.0496 | 0.0316 | 0.0386 | 0.3189 |
60
- | 1.7057 | 4.0 | 40 | 1.6785 | {'precision': 0.012626262626262626, 'recall': 0.012360939431396786, 'f1': 0.012492192379762648, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.16886930983847284, 'recall': 0.107981220657277, 'f1': 0.13172966781214204, 'number': 1065} | 0.0849 | 0.0627 | 0.0721 | 0.3426 |
61
- | 1.6571 | 5.0 | 50 | 1.6336 | {'precision': 0.016286644951140065, 'recall': 0.018541409147095178, 'f1': 0.017341040462427744, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2211764705882353, 'recall': 0.17652582159624414, 'f1': 0.19634464751958225, 'number': 1065} | 0.1146 | 0.1019 | 0.1079 | 0.3714 |
62
- | 1.6219 | 6.0 | 60 | 1.5894 | {'precision': 0.03238095238095238, 'recall': 0.042027194066749075, 'f1': 0.036578805809575045, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.26129666011787817, 'recall': 0.24976525821596243, 'f1': 0.2554008641382621, 'number': 1065} | 0.1451 | 0.1505 | 0.1477 | 0.4028 |
63
- | 1.5748 | 7.0 | 70 | 1.5484 | {'precision': 0.03796296296296296, 'recall': 0.05067985166872682, 'f1': 0.04340921122286924, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.28073394495412846, 'recall': 0.28732394366197184, 'f1': 0.28399071925754066, 'number': 1065} | 0.1599 | 0.1741 | 0.1667 | 0.4319 |
64
- | 1.5387 | 8.0 | 80 | 1.5098 | {'precision': 0.044036697247706424, 'recall': 0.059332509270704575, 'f1': 0.05055292259083728, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.30583333333333335, 'recall': 0.34460093896713617, 'f1': 0.3240618101545254, 'number': 1065} | 0.1812 | 0.2082 | 0.1938 | 0.4623 |
65
- | 1.5004 | 9.0 | 90 | 1.4753 | {'precision': 0.05149812734082397, 'recall': 0.06798516687268233, 'f1': 0.05860415556739478, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3378812199036918, 'recall': 0.39530516431924884, 'f1': 0.36434443963652097, 'number': 1065} | 0.2057 | 0.2388 | 0.2210 | 0.4887 |
66
- | 1.4659 | 10.0 | 100 | 1.4462 | {'precision': 0.058823529411764705, 'recall': 0.0754017305315204, 'f1': 0.06608884073672806, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3586530931871574, 'recall': 0.4300469483568075, 'f1': 0.39111870196413323, 'number': 1065} | 0.2243 | 0.2604 | 0.2410 | 0.5046 |
67
- | 1.4314 | 11.0 | 110 | 1.4207 | {'precision': 0.06769230769230769, 'recall': 0.0815822002472188, 'f1': 0.07399103139013452, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.38271604938271603, 'recall': 0.46572769953051646, 'f1': 0.42016094875052945, 'number': 1065} | 0.2475 | 0.2820 | 0.2636 | 0.5184 |
68
- | 1.4242 | 12.0 | 120 | 1.4003 | {'precision': 0.07203389830508475, 'recall': 0.08405438813349815, 'f1': 0.0775812892184826, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.40076628352490423, 'recall': 0.49107981220657276, 'f1': 0.4413502109704641, 'number': 1065} | 0.2628 | 0.2965 | 0.2786 | 0.5273 |
69
- | 1.3939 | 13.0 | 130 | 1.3855 | {'precision': 0.07792207792207792, 'recall': 0.08899876390605686, 'f1': 0.0830929024812464, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.40953822861468586, 'recall': 0.507981220657277, 'f1': 0.45347862531433364, 'number': 1065} | 0.2731 | 0.3076 | 0.2893 | 0.5367 |
70
- | 1.3837 | 14.0 | 140 | 1.3764 | {'precision': 0.08021978021978023, 'recall': 0.09023485784919653, 'f1': 0.08493310063990692, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.41635124905374715, 'recall': 0.5164319248826291, 'f1': 0.4610226320201173, 'number': 1065} | 0.2792 | 0.3126 | 0.2950 | 0.5410 |
71
- | 1.3603 | 15.0 | 150 | 1.3725 | {'precision': 0.07982261640798226, 'recall': 0.08899876390605686, 'f1': 0.0841613091759205, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4174242424242424, 'recall': 0.5173708920187794, 'f1': 0.46205450733752623, 'number': 1065} | 0.2804 | 0.3126 | 0.2956 | 0.5437 |
72
 
73
 
74
  ### Framework versions
75
 
76
  - Transformers 4.31.0
77
  - Pytorch 2.0.1+cu118
78
- - Datasets 2.14.0
79
  - Tokenizers 0.13.3
 
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.3215
20
+ - Answer: {'precision': 0.10096818810511757, 'recall': 0.09023485784919653, 'f1': 0.09530026109660573, 'number': 809}
21
  - Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
22
+ - Question: {'precision': 0.3980815347721823, 'recall': 0.4676056338028169, 'f1': 0.43005181347150256, 'number': 1065}
23
+ - Overall Precision: 0.2891
24
+ - Overall Recall: 0.2865
25
+ - Overall F1: 0.2878
26
+ - Overall Accuracy: 0.5339
27
 
28
  ## Model description
29
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.9471 | 1.0 | 10 | 1.8844 | {'precision': 0.022006141248720572, 'recall': 0.05315203955500618, 'f1': 0.031125588128845458, 'number': 809} | {'precision': 0.00702576112412178, 'recall': 0.05042016806722689, 'f1': 0.012332990750256937, 'number': 119} | {'precision': 0.054583995760466346, 'recall': 0.09671361502347418, 'f1': 0.06978319783197831, 'number': 1065} | 0.0324 | 0.0763 | 0.0455 | 0.2491 |
58
+ | 1.8584 | 2.0 | 20 | 1.8099 | {'precision': 0.018408941485864562, 'recall': 0.034610630407911, 'f1': 0.024034334763948496, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.08241758241758242, 'recall': 0.11267605633802817, 'f1': 0.09520031733439112, 'number': 1065} | 0.0469 | 0.0743 | 0.0575 | 0.3139 |
59
+ | 1.7841 | 3.0 | 30 | 1.7444 | {'precision': 0.02190395956192081, 'recall': 0.032138442521631644, 'f1': 0.026052104208416832, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.10752688172043011, 'recall': 0.12206572769953052, 'f1': 0.11433597185576078, 'number': 1065} | 0.0645 | 0.0783 | 0.0707 | 0.3426 |
60
+ | 1.7255 | 4.0 | 40 | 1.6851 | {'precision': 0.026865671641791045, 'recall': 0.03337453646477132, 'f1': 0.029768467475192944, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.15547024952015356, 'recall': 0.15211267605633802, 'f1': 0.1537731371618415, 'number': 1065} | 0.0922 | 0.0948 | 0.0935 | 0.3647 |
61
+ | 1.6607 | 5.0 | 50 | 1.6287 | {'precision': 0.036458333333333336, 'recall': 0.04326328800988875, 'f1': 0.03957037874505371, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2018348623853211, 'recall': 0.20657276995305165, 'f1': 0.20417633410672859, 'number': 1065} | 0.1244 | 0.1279 | 0.1261 | 0.3943 |
62
+ | 1.6127 | 6.0 | 60 | 1.5738 | {'precision': 0.045, 'recall': 0.05562422744128554, 'f1': 0.04975124378109452, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.24034334763948498, 'recall': 0.26291079812206575, 'f1': 0.25112107623318386, 'number': 1065} | 0.1501 | 0.1631 | 0.1563 | 0.4234 |
63
+ | 1.5582 | 7.0 | 70 | 1.5242 | {'precision': 0.05465587044534413, 'recall': 0.06674907292954264, 'f1': 0.060100166944908176, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.26282051282051283, 'recall': 0.307981220657277, 'f1': 0.2836143536532642, 'number': 1065} | 0.1708 | 0.1917 | 0.1807 | 0.4483 |
64
+ | 1.5135 | 8.0 | 80 | 1.4789 | {'precision': 0.05976520811099253, 'recall': 0.069221260815822, 'f1': 0.06414662084765177, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.29073482428115016, 'recall': 0.34178403755868547, 'f1': 0.31419939577039274, 'number': 1065} | 0.1919 | 0.2107 | 0.2009 | 0.4679 |
65
+ | 1.4676 | 9.0 | 90 | 1.4380 | {'precision': 0.06818181818181818, 'recall': 0.07416563658838071, 'f1': 0.07104795737122557, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3149480415667466, 'recall': 0.3699530516431925, 'f1': 0.34024179620034545, 'number': 1065} | 0.2130 | 0.2278 | 0.2202 | 0.4851 |
66
+ | 1.4233 | 10.0 | 100 | 1.4035 | {'precision': 0.07664670658682635, 'recall': 0.07911001236093942, 'f1': 0.0778588807785888, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3413848631239936, 'recall': 0.39812206572769954, 'f1': 0.3675769397485913, 'number': 1065} | 0.2350 | 0.2449 | 0.2398 | 0.4988 |
67
+ | 1.3864 | 11.0 | 110 | 1.3744 | {'precision': 0.0810126582278481, 'recall': 0.07911001236093942, 'f1': 0.08005003126954345, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3583535108958838, 'recall': 0.4169014084507042, 'f1': 0.38541666666666663, 'number': 1065} | 0.2504 | 0.2549 | 0.2526 | 0.5113 |
68
+ | 1.3746 | 12.0 | 120 | 1.3519 | {'precision': 0.0870712401055409, 'recall': 0.0815822002472188, 'f1': 0.08423739629865987, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3806818181818182, 'recall': 0.4403755868544601, 'f1': 0.40835872877666524, 'number': 1065} | 0.2688 | 0.2684 | 0.2686 | 0.5175 |
69
+ | 1.3417 | 13.0 | 130 | 1.3352 | {'precision': 0.09568733153638814, 'recall': 0.08776266996291718, 'f1': 0.09155383623468731, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.39403706688154716, 'recall': 0.4591549295774648, 'f1': 0.4241110147441457, 'number': 1065} | 0.2824 | 0.2810 | 0.2817 | 0.5272 |
70
+ | 1.3318 | 14.0 | 140 | 1.3254 | {'precision': 0.09686221009549795, 'recall': 0.08776266996291718, 'f1': 0.09208819714656291, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3942307692307692, 'recall': 0.4619718309859155, 'f1': 0.4254215304798963, 'number': 1065} | 0.2841 | 0.2825 | 0.2833 | 0.5314 |
71
+ | 1.3086 | 15.0 | 150 | 1.3215 | {'precision': 0.10096818810511757, 'recall': 0.09023485784919653, 'f1': 0.09530026109660573, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3980815347721823, 'recall': 0.4676056338028169, 'f1': 0.43005181347150256, 'number': 1065} | 0.2891 | 0.2865 | 0.2878 | 0.5339 |
72
 
73
 
74
  ### Framework versions
75
 
76
  - Transformers 4.31.0
77
  - Pytorch 2.0.1+cu118
78
+ - Datasets 2.14.4
79
  - Tokenizers 0.13.3
logs/events.out.tfevents.1691736207.4d17f9ce90b7.2427.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f66ae19e047fad1642572e91fda7985c61c8436da149f14062a0bbf1f97e4f36
3
- size 14072
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57d29b6f87c35e860dbba66f73ed4ea8a1916c56d979e29d5f86ffe5adac2a0c
3
+ size 14426