Hammad712 commited on
Commit
11acb1c
·
verified ·
1 Parent(s): bc52b6d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -79
README.md CHANGED
@@ -1,3 +1,11 @@
 
 
 
 
 
 
 
 
1
  Model Card: GAN Colorization Model
2
  Model Description
3
  This GAN-based model performs image colorization, transforming grayscale images into color images. It leverages a generator network to predict the color channels and a discriminator network to improve the colorization quality through adversarial training.
@@ -22,85 +30,6 @@ Loss Functions:
22
  GAN Loss: Binary Cross-Entropy Loss with Logits
23
  L1 Loss: L1 Loss for pixel-wise comparison between generated and real color channels
24
 
25
-
26
- Model Inference
27
-
28
- torch
29
- torchvision
30
- fastai
31
- skimage
32
- matplotlib
33
- PIL
34
- numpy
35
-
36
- Inference Code
37
-
38
- from huggingface_hub import hf_hub_download
39
- import torch
40
- from PIL import Image
41
- from torchvision import transforms
42
- from skimage.color import rgb2lab, lab2rgb
43
- import numpy as np
44
- import matplotlib.pyplot as plt
45
-
46
- # Download the model from Hugging Face Hub
47
- repo_id = "Hammad712/GAN-Colorization-Model"
48
- model_filename = "generator.pt"
49
- model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
50
-
51
- # Define the generator model (same architecture as used during training)
52
- from fastai.vision.learner import create_body
53
- from torchvision.models import resnet34
54
- from fastai.vision.models.unet import DynamicUnet
55
-
56
- def build_generator(n_input=1, n_output=2, size=256):
57
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
58
- backbone = create_body(resnet34(), pretrained=True, n_in=n_input, cut=-2)
59
- G_net = DynamicUnet(backbone, n_output, (size, size)).to(device)
60
- return G_net
61
-
62
- # Initialize and load the model
63
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
64
- G_net = build_generator(n_input=1, n_output=2, size=256)
65
- G_net.load_state_dict(torch.load(model_path, map_location=device))
66
- G_net.eval()
67
-
68
- # Preprocessing function
69
- def preprocess_image(img_path):
70
- img = Image.open(img_path).convert("RGB")
71
- img = transforms.Resize((256, 256), Image.BICUBIC)(img)
72
- img = np.array(img)
73
- img_to_lab = rgb2lab(img).astype("float32")
74
- img_to_lab = transforms.ToTensor()(img_to_lab)
75
- L = img_to_lab[[0], ...] / 50. - 1.
76
- return L.unsqueeze(0).to(device)
77
-
78
- # Inference function
79
- def colorize_image(img_path, model):
80
- L = preprocess_image(img_path)
81
- with torch.no_grad():
82
- ab = model(L)
83
- L = (L + 1.) * 50.
84
- ab = ab * 110.
85
- Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
86
- rgb_imgs = []
87
- for img in Lab:
88
- img_rgb = lab2rgb(img)
89
- rgb_imgs.append(img_rgb)
90
- return np.stack(rgb_imgs, axis=0)
91
-
92
- # Example image path
93
- img_path = "/path/to/your/image.jpg" # Replace with your image path
94
-
95
- # Perform inference
96
- colorized_images = colorize_image(img_path, G_net)
97
-
98
- # Display the result
99
- plt.imshow(colorized_images[0])
100
- plt.axis("off")
101
- plt.show()
102
-
103
-
104
  Usage
105
  To use the model for image colorization, ensure that the dependencies are installed and run the inference code provided. You will need to replace the image path with your own image for colorization.
106
 
 
1
+ ---
2
+ datasets:
3
+ - phiyodr/coco2017
4
+ language:
5
+ - en
6
+ library_name: fastai
7
+ pipeline_tag: image-to-image
8
+ ---
9
  Model Card: GAN Colorization Model
10
  Model Description
11
  This GAN-based model performs image colorization, transforming grayscale images into color images. It leverages a generator network to predict the color channels and a discriminator network to improve the colorization quality through adversarial training.
 
30
  GAN Loss: Binary Cross-Entropy Loss with Logits
31
  L1 Loss: L1 Loss for pixel-wise comparison between generated and real color channels
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  Usage
34
  To use the model for image colorization, ensure that the dependencies are installed and run the inference code provided. You will need to replace the image path with your own image for colorization.
35