--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Multi-ling-BERT results: [] --- # Multi-ling-BERT This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. ## Usage ### In Transformers ```python from transformers import pipeline,AutoTokenizer model_name = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(model_name) text = "I feel happy today!" inputs = tokenizer(text,return_tensors="pt",padding=True, truncation=True) { 'input_ids': tensor([[ 101, 1045, 2514, 3407, 2651, 999, 102]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]]) } tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) ['[CLS]', 'i', 'feel', 'happy', 'today', '!', '[SEP]'] tokenizer.decode(inputs["input_ids"][0]) [CLS] i feel happy today! [SEP] text = "This is the question" query = "This is the context with lots of information. Some useless. The answer is here some more words." inputs = tokenizer(text,query,return_tensors="pt",padding=True, truncation=True) { 'input_ids': tensor([ 101, 2023, 2003, 1996, 3160, 102, 2023, 2003, 1996, 6123, 2007, 7167, 1997, 2592, 1012, 2070, 11809, 1012, 1996, 3437, 2003, 2182, 2070, 2062, 2616, 1012, 102]) } tokenizer.decode(inputs ["input_ids"][0]) text = "I feel happy today!" # BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained(model_name) inputs_for_BertTokenizer = tokenizer(text, return_tensors="pt",padding=False, truncation=True, max_length=512, stride=256) { 'input_ids': tensor([[ 101, 100, 11297, 9200, 11262, 106, 102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]]) } # BartTokenizerFast tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base") inputs_for_BartTokenizerFast= tokenizer(text, return_tensors="pt",padding=False, truncation=True, max_length=512, stride=256) { 'input_ids': tensor([[ 0, 100, 619, 1372, 452, 328, 2]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]]) } # Model from transformers import AutoModel model_name = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModel.from_pretrained(model_name) outputs = model(**inputs) print(outputs.last_hidden_state.shape) { torch.Size([1, 7, 768]) } from transformers import AutoModelForSequenceClassification model_name = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModelForSequenceClassification.from_pretrained(model_name) outputs = model(**inputs) print(outputs.logits) { tensor([[-4.3450, 4.6878]], grad_fn=) } import torch predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) print(predictions) { tensor([[1.1942e-04, 9.9988e-01]], grad_fn=) } ```