Haon-Chen commited on
Commit
5226e20
·
verified ·
1 Parent(s): 87c8bb7

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md CHANGED
@@ -1,3 +1,112 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ ## SPEED-synthesis-7b-senior
6
+
7
+ [Little Giants: Synthesizing High-Quality Embedding Data at Scale](https://arxiv.org/pdf/2410.18634.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024
8
+
9
+ This is the data revisor model of SPEED.
10
+
11
+ ## Usage
12
+
13
+ Below is an example to revise s2s data using this revisor.
14
+
15
+ The prompts and misc scripts can be found in our [github page](https://github.com/haon-chen/SPEED)
16
+
17
+ ### Transformers
18
+
19
+ ```python
20
+ import torch
21
+ import os
22
+ import random
23
+ import numpy as np
24
+ import json
25
+
26
+
27
+ from torch import Tensor
28
+ from transformers import AutoTokenizer, AutoModelForCausalLM
29
+ from typing import List, Dict, Optional
30
+
31
+ from prompts_aligning import get_create_all_revise_data_prompt
32
+ from utils import fix_common_json_errors_and_loads_for_revisor
33
+
34
+
35
+ LLAMA3_PROMPT = """
36
+ {prompt} [/INST]
37
+ """.strip("\n")
38
+
39
+ # Each query must come with a one-sentence instruction that describes the task
40
+ old_prompts = [
41
+ "You have been assigned a text matching task: Match a Stockard Channing movie title with a brief plot description.\n\nYour mission is to write one example for this task in JSON format. The JSON object must contain the following keys:\n- \"input\": a string, a random input specified by the task.\n- \"positive_document\": a string, a relevant document for the \"input\" according to the task.\n\nPlease adhere to the following guidelines:\n- The values of all fields should be in English.\n- Both the \"input\" and \"positive_document\" should be very short (a sentence or a phrase), avoid substantial word overlaps, otherwise the task would be too easy.\n- The \"input\" and \"positive_document\" should be independent of each other.\n\nYour output must always be a JSON object only, do not explain yourself or output anything else. Be creative!"
42
+ ]
43
+ old_data = [
44
+ {"input": "Stockard Channing in 'The Business of Strangers', directed by Patrick Stettner.", "positive_document": "In 'The Business of Strangers', Channing stars as a businesswoman who embarks on a ruthless journey, after which she undergoes a drastic change. She faces many challenges while pursuing her goals and eventually comes out stronger."},
45
+ ]
46
+ language = 'English'
47
+
48
+ prompts = [LLAMA3_PROMPT.format(prompt=get_create_all_revise_data_prompt(prompt=old_prompt, data=json.dumps(data))[1]['content']) for old_prompt in old_prompts for data in old_data]
49
+
50
+ tokenizer = AutoTokenizer.from_pretrained('Haon-Chen/speed-synthesis-7b-revisor')
51
+ model = AutoModelForCausalLM.from_pretrained('Haon-Chen/speed-synthesis-7b-revisor')
52
+ model.to("cuda:0")
53
+ tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
54
+ tokenizer.padding_side = "left"
55
+ tokenizer.truncation_side = "left"
56
+
57
+ # Tokenize the input texts
58
+ encodes = tokenizer(prompts, padding="longest", add_special_tokens=True, return_tensors="pt")
59
+ input_ids = encodes.input_ids.to(model.device)
60
+ attention_mask = encodes.attention_mask.to(model.device)
61
+
62
+ GEN_CONFIG = {"do_sample":True, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 800}
63
+ output = model.generate(
64
+ input_ids=input_ids,
65
+ attention_mask=attention_mask,
66
+ pad_token_id = tokenizer.eos_token_id,
67
+ **GEN_CONFIG
68
+ )
69
+ output_texts = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False)
70
+ batch_results = []
71
+ for i in range(len(output_texts)):
72
+ batch_results.append(output_texts[i][len(prompts[i]):].strip(' '))
73
+
74
+ bad_cnt=0
75
+ outputs = []
76
+ for i, result in enumerate(batch_results):
77
+ try:
78
+ content = fix_common_json_errors_and_loads_for_revisor(result)
79
+ revision = content["revision"]
80
+ reason = content["reason"]
81
+
82
+ user_query = revision.get("input", "")
83
+ positive_document = revision.get("positive_document", "")
84
+ except:
85
+ bad_cnt+=1
86
+ continue
87
+ out_data = {
88
+ "query": user_query,
89
+ "positives": [positive_document],
90
+ "negatives": [],
91
+ "language": "English",
92
+ "reason": reason,
93
+ }
94
+ outputs.append(out_data)
95
+ print(bad_cnt)
96
+ print(outputs)
97
+ ```
98
+
99
+ ## Citation
100
+
101
+ If you find our paper or models helpful, please consider cite as follows:
102
+
103
+ ```bibtex
104
+ @article{chen2024little,
105
+ title={Little Giants: Synthesizing High-Quality Embedding Data at Scale},
106
+ author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng},
107
+ journal={arXiv preprint arXiv:2410.18634},
108
+ year={2024}
109
+ }
110
+ ```
111
+
112
+ ## Limitations