File size: 1,798 Bytes
908bfdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ebcb46
 
 
908bfdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ebcb46
 
 
 
 
 
 
908bfdd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hardik1313X/mt5-small-finetuned-amazon-en-es
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Hardik1313X/mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.0749
- Validation Loss: 3.3854
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 10.0060    | 4.3897          | 0     |
| 5.9039     | 3.8382          | 1     |
| 5.1623     | 3.6476          | 2     |
| 4.7477     | 3.5488          | 3     |
| 4.4688     | 3.4721          | 4     |
| 4.2706     | 3.4173          | 5     |
| 4.1381     | 3.3921          | 6     |
| 4.0749     | 3.3854          | 7     |


### Framework versions

- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1