|
import cv2
|
|
from ultralytics import YOLO, solutions
|
|
import torch
|
|
import numpy as np
|
|
from collections import defaultdict
|
|
import gradio as gr
|
|
import tempfile
|
|
import os
|
|
|
|
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
|
print("Device:", device)
|
|
|
|
|
|
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
|
|
midas.to(device)
|
|
midas.eval()
|
|
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms").small_transform
|
|
|
|
|
|
model = YOLO('yolov8x.pt')
|
|
names = model.model.names
|
|
model.to(device)
|
|
|
|
pixels_per_meter = 300
|
|
unattended_threshold = 2.0
|
|
|
|
dist_obj = solutions.DistanceCalculation(names=names, view_img=False, pixels_per_meter=pixels_per_meter)
|
|
|
|
|
|
model.overrides['conf'] = 0.5
|
|
model.overrides['iou'] = 0.5
|
|
model.overrides['agnostic_nms'] = True
|
|
model.overrides['max_det'] = 1000
|
|
|
|
|
|
ownership_scores = defaultdict(lambda: defaultdict(int))
|
|
|
|
|
|
def calculate_distance(depth_map, point1, point2):
|
|
dist_2d_m, dist_2d_mm = dist_obj.calculate_distance(point1, point2)
|
|
z1 = depth_map[int(point1[1]), int(point1[0])] / pixels_per_meter
|
|
z2 = depth_map[int(point2[1]), int(point2[0])] / pixels_per_meter
|
|
depth_diff = np.abs(z1 - z2)
|
|
distance = np.sqrt(dist_2d_m ** 2 + depth_diff ** 2)
|
|
return distance
|
|
|
|
|
|
def process_video(video_source):
|
|
cap = cv2.VideoCapture(video_source)
|
|
if not cap.isOpened():
|
|
print("Error: Could not open video.")
|
|
return None
|
|
|
|
owners = {}
|
|
abandoned_luggages = set()
|
|
|
|
frame_count = 0
|
|
output_frames = []
|
|
|
|
while cap.isOpened():
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
frame_count += 1
|
|
if frame_count % 10 != 0:
|
|
continue
|
|
|
|
|
|
results = model.track(frame, persist=True, classes=[0, 28, 24, 26], show=False)
|
|
frame_ = results[0].plot()
|
|
|
|
|
|
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
input_batch = midas_transforms(img).to(device)
|
|
with torch.no_grad():
|
|
prediction = midas(input_batch)
|
|
prediction = torch.nn.functional.interpolate(
|
|
prediction.unsqueeze(1),
|
|
size=img.shape[:2],
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
).squeeze()
|
|
depth_map = prediction.cpu().numpy()
|
|
|
|
|
|
persons = []
|
|
luggages = []
|
|
num_boxes = len(results[0].boxes)
|
|
for i in range(num_boxes):
|
|
box = results[0].boxes[i]
|
|
centroid = get_centroid(box)
|
|
track_id = box.id
|
|
if box.cls == 0:
|
|
persons.append((track_id, centroid))
|
|
elif box.cls in [24, 28, 26]:
|
|
luggages.append((track_id, centroid))
|
|
|
|
for person_id, person_centroid in persons:
|
|
for luggage_id, luggage_centroid in luggages:
|
|
distance_m = calculate_distance(depth_map, person_centroid, luggage_centroid)
|
|
if distance_m <= unattended_threshold and luggage_id not in abandoned_luggages:
|
|
ownership_scores[luggage_id][person_id] += 1
|
|
|
|
|
|
for luggage_id, luggage_centroid in luggages:
|
|
person_in_range = any(
|
|
calculate_distance(depth_map, person_centroid, luggage_centroid) <= unattended_threshold
|
|
for person_id, person_centroid in persons
|
|
)
|
|
if not person_in_range and luggage_id not in abandoned_luggages:
|
|
abandoned_luggages.add(luggage_id)
|
|
|
|
|
|
for box in results[0].boxes:
|
|
xyxy = box.xyxy[0].cpu().numpy().astype(int)
|
|
cv2.rectangle(frame_, (xyxy[0], xyxy[1]), (xyxy[2], xyxy[3]), (0, 255, 0), 2)
|
|
centroid = get_centroid(box)
|
|
cv2.circle(frame_, (int(centroid[0]), int(centroid[1])), 5, (0, 255, 0), -1)
|
|
|
|
output_frames.append(frame_)
|
|
|
|
cap.release()
|
|
return output_frames
|
|
|
|
|
|
def get_centroid(box):
|
|
return dist_obj.calculate_centroid(box.xyxy[0].cpu().numpy().astype(int))
|
|
|
|
|
|
def video_interface(video_path):
|
|
processed_frames = process_video(video_path)
|
|
if not processed_frames:
|
|
return None
|
|
|
|
|
|
height, width, _ = processed_frames[0].shape
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
|
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), 10, (width, height))
|
|
|
|
for frame in processed_frames:
|
|
out.write(frame)
|
|
|
|
out.release()
|
|
|
|
|
|
if os.path.getsize(temp_file.name) > 50 * 1024 * 1024:
|
|
return {"output": temp_file.name, "message": "The video is large. Click the link to download."}
|
|
|
|
return temp_file.name
|
|
|
|
|
|
|
|
def gradio_interface(video_path):
|
|
result = video_interface(video_path)
|
|
if isinstance(result, dict):
|
|
return result['output'], result['message']
|
|
return result, None
|
|
|
|
|
|
interface = gr.Interface(
|
|
fn=gradio_interface,
|
|
inputs=gr.Video(format="mp4"),
|
|
outputs=["video", "text"],
|
|
title="Abandoned Object Detection"
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
interface.queue(max_size=20).launch(
|
|
server_name="127.0.0.1",
|
|
server_port=7860,
|
|
debug=True,
|
|
share=True
|
|
)
|
|
|