End of training
Browse files- README.md +61 -180
- config.json +86 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,80 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
base_model: beit-base-finetuned-ade-640-640
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: BEiT_beit-base-finetuned-ade-640-640_Clean-Set3-Grayscale_RGB
|
9 |
+
results: []
|
10 |
---
|
11 |
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
# BEiT_beit-base-finetuned-ade-640-640_Clean-Set3-Grayscale_RGB
|
16 |
|
17 |
+
This model is a fine-tuned version of [beit-base-finetuned-ade-640-640](https://huggingface.co/beit-base-finetuned-ade-640-640) on the Hasano20/Clean-Set3-Grayscale dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0652
|
20 |
+
- Mean Iou: 0.9446
|
21 |
+
- Mean Accuracy: 0.9687
|
22 |
+
- Overall Accuracy: 0.9855
|
23 |
+
- Accuracy Background: 0.9893
|
24 |
+
- Accuracy Melt: 0.9263
|
25 |
+
- Accuracy Substrate: 0.9905
|
26 |
+
- Iou Background: 0.9796
|
27 |
+
- Iou Melt: 0.8757
|
28 |
+
- Iou Substrate: 0.9785
|
29 |
|
30 |
+
## Model description
|
31 |
|
32 |
+
More information needed
|
33 |
|
34 |
+
## Intended uses & limitations
|
35 |
|
36 |
+
More information needed
|
37 |
|
38 |
+
## Training and evaluation data
|
39 |
|
40 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
## Training procedure
|
43 |
|
44 |
+
### Training hyperparameters
|
45 |
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 16
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: cosine
|
53 |
+
- lr_scheduler_warmup_steps: 200
|
54 |
+
- num_epochs: 50
|
55 |
|
56 |
+
### Training results
|
57 |
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|
59 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
|
60 |
+
| 0.1893 | 3.7037 | 100 | 0.1358 | 0.9180 | 0.9486 | 0.9815 | 0.9923 | 0.8651 | 0.9884 | 0.9821 | 0.7997 | 0.9723 |
|
61 |
+
| 0.0951 | 7.4074 | 200 | 0.0746 | 0.9483 | 0.9791 | 0.9876 | 0.9909 | 0.9575 | 0.9890 | 0.9860 | 0.8775 | 0.9814 |
|
62 |
+
| 0.0892 | 11.1111 | 300 | 0.0631 | 0.9489 | 0.9772 | 0.9866 | 0.9875 | 0.9536 | 0.9903 | 0.9817 | 0.8854 | 0.9796 |
|
63 |
+
| 0.0878 | 14.8148 | 400 | 0.0692 | 0.9375 | 0.9687 | 0.9829 | 0.9853 | 0.9332 | 0.9877 | 0.9742 | 0.8632 | 0.9750 |
|
64 |
+
| 0.07 | 18.5185 | 500 | 0.0631 | 0.9419 | 0.9700 | 0.9844 | 0.9865 | 0.9339 | 0.9897 | 0.9777 | 0.8714 | 0.9767 |
|
65 |
+
| 0.0507 | 22.2222 | 600 | 0.0646 | 0.9379 | 0.9659 | 0.9829 | 0.9879 | 0.9230 | 0.9869 | 0.9738 | 0.8653 | 0.9747 |
|
66 |
+
| 0.0523 | 25.9259 | 700 | 0.0569 | 0.9485 | 0.9724 | 0.9864 | 0.9903 | 0.9371 | 0.9898 | 0.9809 | 0.8855 | 0.9791 |
|
67 |
+
| 0.0402 | 29.6296 | 800 | 0.0622 | 0.9422 | 0.9686 | 0.9848 | 0.9881 | 0.9279 | 0.9897 | 0.9777 | 0.8711 | 0.9778 |
|
68 |
+
| 0.0406 | 33.3333 | 900 | 0.0631 | 0.9427 | 0.9683 | 0.9852 | 0.9894 | 0.9256 | 0.9899 | 0.9790 | 0.8707 | 0.9785 |
|
69 |
+
| 0.0389 | 37.0370 | 1000 | 0.0650 | 0.9436 | 0.9695 | 0.9852 | 0.9879 | 0.9303 | 0.9904 | 0.9784 | 0.8739 | 0.9784 |
|
70 |
+
| 0.0396 | 40.7407 | 1100 | 0.0634 | 0.9457 | 0.9700 | 0.9857 | 0.9900 | 0.9301 | 0.9899 | 0.9798 | 0.8787 | 0.9787 |
|
71 |
+
| 0.036 | 44.4444 | 1200 | 0.0653 | 0.9443 | 0.9684 | 0.9855 | 0.9894 | 0.9254 | 0.9906 | 0.9797 | 0.8748 | 0.9786 |
|
72 |
+
| 0.0224 | 48.1481 | 1300 | 0.0652 | 0.9446 | 0.9687 | 0.9855 | 0.9893 | 0.9263 | 0.9905 | 0.9796 | 0.8757 | 0.9785 |
|
73 |
|
|
|
74 |
|
75 |
+
### Framework versions
|
76 |
|
77 |
+
- Transformers 4.41.2
|
78 |
+
- Pytorch 2.0.1+cu117
|
79 |
+
- Datasets 2.19.2
|
80 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/beit-base-finetuned-ade-640-640",
|
3 |
+
"add_fpn": false,
|
4 |
+
"architectures": [
|
5 |
+
"BeitForSemanticSegmentation"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.0,
|
8 |
+
"auxiliary_channels": 256,
|
9 |
+
"auxiliary_concat_input": false,
|
10 |
+
"auxiliary_loss_weight": 0.4,
|
11 |
+
"auxiliary_num_convs": 1,
|
12 |
+
"drop_path_rate": 0.1,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_dropout_prob": 0.0,
|
15 |
+
"hidden_size": 768,
|
16 |
+
"id2label": {
|
17 |
+
"0": "background",
|
18 |
+
"1": "melt",
|
19 |
+
"2": "substrate"
|
20 |
+
},
|
21 |
+
"image_size": 640,
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 3072,
|
24 |
+
"label2id": {
|
25 |
+
"background": 0,
|
26 |
+
"melt": 1,
|
27 |
+
"substrate": 2
|
28 |
+
},
|
29 |
+
"layer_norm_eps": 1e-12,
|
30 |
+
"layer_scale_init_value": 0.1,
|
31 |
+
"model_type": "beit",
|
32 |
+
"num_attention_heads": 12,
|
33 |
+
"num_channels": 3,
|
34 |
+
"num_hidden_layers": 12,
|
35 |
+
"out_features": [
|
36 |
+
"stage3",
|
37 |
+
"stage5",
|
38 |
+
"stage7",
|
39 |
+
"stage11"
|
40 |
+
],
|
41 |
+
"out_indices": [
|
42 |
+
3,
|
43 |
+
5,
|
44 |
+
7,
|
45 |
+
11
|
46 |
+
],
|
47 |
+
"patch_size": 16,
|
48 |
+
"pool_scales": [
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
3,
|
52 |
+
6
|
53 |
+
],
|
54 |
+
"reshape_hidden_states": true,
|
55 |
+
"segmentation_indices": [
|
56 |
+
3,
|
57 |
+
5,
|
58 |
+
7,
|
59 |
+
11
|
60 |
+
],
|
61 |
+
"semantic_loss_ignore_index": 255,
|
62 |
+
"stage_names": [
|
63 |
+
"stem",
|
64 |
+
"stage1",
|
65 |
+
"stage2",
|
66 |
+
"stage3",
|
67 |
+
"stage4",
|
68 |
+
"stage5",
|
69 |
+
"stage6",
|
70 |
+
"stage7",
|
71 |
+
"stage8",
|
72 |
+
"stage9",
|
73 |
+
"stage10",
|
74 |
+
"stage11",
|
75 |
+
"stage12"
|
76 |
+
],
|
77 |
+
"torch_dtype": "float32",
|
78 |
+
"transformers_version": "4.41.2",
|
79 |
+
"use_absolute_position_embeddings": false,
|
80 |
+
"use_auxiliary_head": true,
|
81 |
+
"use_mask_token": false,
|
82 |
+
"use_mean_pooling": true,
|
83 |
+
"use_relative_position_bias": true,
|
84 |
+
"use_shared_relative_position_bias": false,
|
85 |
+
"vocab_size": 8192
|
86 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e86c824ea5dcb3c6b13081ac5ed632db9f169e73aad03f916791e0f904dead59
|
3 |
+
size 653146272
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e14d4f9b6d0589dae8c95994d0400383fbe48f40410b7ca4f6b7fa4a266dda5a
|
3 |
+
size 4987
|