File size: 9,599 Bytes
b562a8d
5d70833
 
 
 
 
 
 
 
b562a8d
 
5d70833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
base_model: beit-base-finetuned-ade-640-640
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: BEiT_beit-base-finetuned-ade-640-640_Clean-Set3_RGB
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BEiT_beit-base-finetuned-ade-640-640_Clean-Set3_RGB

This model is a fine-tuned version of [beit-base-finetuned-ade-640-640](https://huggingface.co/beit-base-finetuned-ade-640-640) on the Hasano20/Clean-Set3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0336
- Mean Iou: 0.9671
- Mean Accuracy: 0.9806
- Overall Accuracy: 0.9926
- Accuracy Background: 0.9956
- Accuracy Melt: 0.9505
- Accuracy Substrate: 0.9957
- Iou Background: 0.9916
- Iou Melt: 0.9208
- Iou Substrate: 0.9888

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.4042        | 0.9434  | 50   | 0.3272          | 0.8363   | 0.8672        | 0.9671           | 0.9931              | 0.6175        | 0.9911             | 0.9836         | 0.5790   | 0.9463        |
| 0.1649        | 1.8868  | 100  | 0.0973          | 0.9371   | 0.9572        | 0.9867           | 0.9959              | 0.8833        | 0.9926             | 0.9881         | 0.8437   | 0.9795        |
| 0.1439        | 2.8302  | 150  | 0.0724          | 0.9495   | 0.9800        | 0.9887           | 0.9946              | 0.9575        | 0.9879             | 0.9898         | 0.8770   | 0.9818        |
| 0.1275        | 3.7736  | 200  | 0.0656          | 0.9443   | 0.9778        | 0.9877           | 0.9969              | 0.9515        | 0.9850             | 0.9903         | 0.8627   | 0.9799        |
| 0.1522        | 4.7170  | 250  | 0.0585          | 0.9567   | 0.9737        | 0.9899           | 0.9971              | 0.9325        | 0.9915             | 0.9887         | 0.8976   | 0.9839        |
| 0.1292        | 5.6604  | 300  | 0.0594          | 0.9502   | 0.9748        | 0.9877           | 0.9934              | 0.9418        | 0.9890             | 0.9857         | 0.8850   | 0.9801        |
| 0.097         | 6.6038  | 350  | 0.0450          | 0.9634   | 0.9775        | 0.9912           | 0.9949              | 0.9432        | 0.9943             | 0.9883         | 0.9154   | 0.9866        |
| 0.1125        | 7.5472  | 400  | 0.0451          | 0.9605   | 0.9757        | 0.9905           | 0.9953              | 0.9384        | 0.9934             | 0.9877         | 0.9080   | 0.9857        |
| 0.102         | 8.4906  | 450  | 0.0518          | 0.9531   | 0.9798        | 0.9876           | 0.9921              | 0.9596        | 0.9876             | 0.9824         | 0.8960   | 0.9808        |
| 0.0878        | 9.4340  | 500  | 0.0411          | 0.9639   | 0.9820        | 0.9911           | 0.9947              | 0.9592        | 0.9922             | 0.9885         | 0.9172   | 0.9859        |
| 0.1198        | 10.3774 | 550  | 0.0679          | 0.9398   | 0.9655        | 0.9821           | 0.9873              | 0.9237        | 0.9855             | 0.9708         | 0.8768   | 0.9719        |
| 0.055         | 11.3208 | 600  | 0.0521          | 0.9518   | 0.9791        | 0.9867           | 0.9846              | 0.9610        | 0.9917             | 0.9780         | 0.8966   | 0.9810        |
| 0.086         | 12.2642 | 650  | 0.0402          | 0.9631   | 0.9791        | 0.9903           | 0.9920              | 0.9514        | 0.9940             | 0.9861         | 0.9185   | 0.9848        |
| 0.058         | 13.2075 | 700  | 0.0455          | 0.9590   | 0.9768        | 0.9892           | 0.9908              | 0.9463        | 0.9934             | 0.9837         | 0.9096   | 0.9836        |
| 0.0494        | 14.1509 | 750  | 0.0441          | 0.9588   | 0.9796        | 0.9895           | 0.9926              | 0.9547        | 0.9914             | 0.9842         | 0.9076   | 0.9846        |
| 0.0599        | 15.0943 | 800  | 0.0401          | 0.9622   | 0.9787        | 0.9904           | 0.9925              | 0.9496        | 0.9939             | 0.9865         | 0.9149   | 0.9851        |
| 0.0422        | 16.0377 | 850  | 0.0393          | 0.9619   | 0.9807        | 0.9906           | 0.9946              | 0.9556        | 0.9919             | 0.9880         | 0.9123   | 0.9853        |
| 0.0454        | 16.9811 | 900  | 0.0429          | 0.9579   | 0.9742        | 0.9897           | 0.9918              | 0.9360        | 0.9948             | 0.9857         | 0.9033   | 0.9846        |
| 0.0806        | 17.9245 | 950  | 0.0377          | 0.9640   | 0.9779        | 0.9915           | 0.9928              | 0.9445        | 0.9964             | 0.9892         | 0.9157   | 0.9869        |
| 0.0677        | 18.8679 | 1000 | 0.0380          | 0.9602   | 0.9797        | 0.9910           | 0.9941              | 0.9513        | 0.9937             | 0.9882         | 0.9047   | 0.9877        |
| 0.036         | 19.8113 | 1050 | 0.0388          | 0.9618   | 0.9799        | 0.9906           | 0.9942              | 0.9529        | 0.9925             | 0.9868         | 0.9127   | 0.9860        |
| 0.0424        | 20.7547 | 1100 | 0.0375          | 0.9601   | 0.9753        | 0.9905           | 0.9934              | 0.9376        | 0.9949             | 0.9868         | 0.9071   | 0.9863        |
| 0.0274        | 21.6981 | 1150 | 0.0322          | 0.9675   | 0.9795        | 0.9927           | 0.9955              | 0.9464        | 0.9965             | 0.9917         | 0.9218   | 0.9890        |
| 0.0622        | 22.6415 | 1200 | 0.0360          | 0.9648   | 0.9798        | 0.9913           | 0.9932              | 0.9512        | 0.9949             | 0.9881         | 0.9197   | 0.9868        |
| 0.0296        | 23.5849 | 1250 | 0.0334          | 0.9670   | 0.9823        | 0.9925           | 0.9953              | 0.9567        | 0.9950             | 0.9917         | 0.9207   | 0.9885        |
| 0.0222        | 24.5283 | 1300 | 0.0326          | 0.9674   | 0.9823        | 0.9925           | 0.9948              | 0.9569        | 0.9953             | 0.9912         | 0.9222   | 0.9887        |
| 0.0719        | 25.4717 | 1350 | 0.0328          | 0.9671   | 0.9832        | 0.9923           | 0.9945              | 0.9603        | 0.9947             | 0.9907         | 0.9223   | 0.9883        |
| 0.0197        | 26.4151 | 1400 | 0.0311          | 0.9681   | 0.9817        | 0.9929           | 0.9962              | 0.9537        | 0.9954             | 0.9922         | 0.9230   | 0.9893        |
| 0.0223        | 27.3585 | 1450 | 0.0324          | 0.9664   | 0.9811        | 0.9925           | 0.9956              | 0.9527        | 0.9950             | 0.9916         | 0.9191   | 0.9885        |
| 0.024         | 28.3019 | 1500 | 0.0340          | 0.9657   | 0.9808        | 0.9920           | 0.9950              | 0.9528        | 0.9947             | 0.9902         | 0.9190   | 0.9880        |
| 0.0242        | 29.2453 | 1550 | 0.0325          | 0.9672   | 0.9810        | 0.9926           | 0.9953              | 0.9522        | 0.9957             | 0.9915         | 0.9212   | 0.9888        |
| 0.0371        | 30.1887 | 1600 | 0.0315          | 0.9681   | 0.9826        | 0.9928           | 0.9957              | 0.9569        | 0.9952             | 0.9920         | 0.9232   | 0.9891        |
| 0.0235        | 31.1321 | 1650 | 0.0370          | 0.9632   | 0.9799        | 0.9911           | 0.9937              | 0.9520        | 0.9941             | 0.9880         | 0.9150   | 0.9868        |
| 0.0266        | 32.0755 | 1700 | 0.0335          | 0.9664   | 0.9811        | 0.9925           | 0.9951              | 0.9527        | 0.9954             | 0.9913         | 0.9193   | 0.9887        |
| 0.0216        | 33.0189 | 1750 | 0.0344          | 0.9656   | 0.9800        | 0.9921           | 0.9946              | 0.9497        | 0.9956             | 0.9904         | 0.9182   | 0.9883        |
| 0.0382        | 33.9623 | 1800 | 0.0319          | 0.9680   | 0.9819        | 0.9929           | 0.9954              | 0.9544        | 0.9959             | 0.9922         | 0.9224   | 0.9893        |
| 0.0161        | 34.9057 | 1850 | 0.0336          | 0.9672   | 0.9799        | 0.9927           | 0.9955              | 0.9479        | 0.9963             | 0.9920         | 0.9206   | 0.9890        |
| 0.0216        | 35.8491 | 1900 | 0.0336          | 0.9671   | 0.9806        | 0.9926           | 0.9956              | 0.9505        | 0.9957             | 0.9916         | 0.9208   | 0.9888        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1