HassanSamo commited on
Commit
310d25b
·
1 Parent(s): 366b2f6

initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. mistral-finetune/checkpoint-10/README.md +220 -0
  3. mistral-finetune/checkpoint-10/adapter_config.json +29 -0
  4. mistral-finetune/checkpoint-10/adapter_model.safetensors +3 -0
  5. mistral-finetune/checkpoint-10/optimizer.pt +3 -0
  6. mistral-finetune/checkpoint-10/rng_state.pth +3 -0
  7. mistral-finetune/checkpoint-10/scheduler.pt +3 -0
  8. mistral-finetune/checkpoint-10/trainer_state.json +34 -0
  9. mistral-finetune/checkpoint-10/training_args.bin +3 -0
  10. mistral-finetune/checkpoint-100/README.md +220 -0
  11. mistral-finetune/checkpoint-100/adapter_config.json +29 -0
  12. mistral-finetune/checkpoint-100/adapter_model.safetensors +3 -0
  13. mistral-finetune/checkpoint-100/optimizer.pt +3 -0
  14. mistral-finetune/checkpoint-100/rng_state.pth +3 -0
  15. mistral-finetune/checkpoint-100/scheduler.pt +3 -0
  16. mistral-finetune/checkpoint-100/trainer_state.json +160 -0
  17. mistral-finetune/checkpoint-100/training_args.bin +3 -0
  18. mistral-finetune/checkpoint-110/README.md +220 -0
  19. mistral-finetune/checkpoint-110/adapter_config.json +29 -0
  20. mistral-finetune/checkpoint-110/adapter_model.safetensors +3 -0
  21. mistral-finetune/checkpoint-110/optimizer.pt +3 -0
  22. mistral-finetune/checkpoint-110/rng_state.pth +3 -0
  23. mistral-finetune/checkpoint-110/scheduler.pt +3 -0
  24. mistral-finetune/checkpoint-110/trainer_state.json +174 -0
  25. mistral-finetune/checkpoint-110/training_args.bin +3 -0
  26. mistral-finetune/checkpoint-120/README.md +220 -0
  27. mistral-finetune/checkpoint-120/adapter_config.json +29 -0
  28. mistral-finetune/checkpoint-120/adapter_model.safetensors +3 -0
  29. mistral-finetune/checkpoint-120/optimizer.pt +3 -0
  30. mistral-finetune/checkpoint-120/rng_state.pth +3 -0
  31. mistral-finetune/checkpoint-120/scheduler.pt +3 -0
  32. mistral-finetune/checkpoint-120/trainer_state.json +188 -0
  33. mistral-finetune/checkpoint-120/training_args.bin +3 -0
  34. mistral-finetune/checkpoint-20/README.md +220 -0
  35. mistral-finetune/checkpoint-20/adapter_config.json +29 -0
  36. mistral-finetune/checkpoint-20/adapter_model.safetensors +3 -0
  37. mistral-finetune/checkpoint-20/optimizer.pt +3 -0
  38. mistral-finetune/checkpoint-20/rng_state.pth +3 -0
  39. mistral-finetune/checkpoint-20/scheduler.pt +3 -0
  40. mistral-finetune/checkpoint-20/trainer_state.json +48 -0
  41. mistral-finetune/checkpoint-20/training_args.bin +3 -0
  42. mistral-finetune/checkpoint-30/README.md +220 -0
  43. mistral-finetune/checkpoint-30/adapter_config.json +29 -0
  44. mistral-finetune/checkpoint-30/adapter_model.safetensors +3 -0
  45. mistral-finetune/checkpoint-30/optimizer.pt +3 -0
  46. mistral-finetune/checkpoint-30/rng_state.pth +3 -0
  47. mistral-finetune/checkpoint-30/scheduler.pt +3 -0
  48. mistral-finetune/checkpoint-30/trainer_state.json +62 -0
  49. mistral-finetune/checkpoint-30/training_args.bin +3 -0
  50. mistral-finetune/checkpoint-40/README.md +220 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ mistral-finetune filter=lfs diff=lfs merge=lfs -text
mistral-finetune/checkpoint-10/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: filipealmeida/Mistral-7B-v0.1-sharded
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
mistral-finetune/checkpoint-10/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "filipealmeida/Mistral-7B-v0.1-sharded",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "up_proj",
21
+ "v_proj",
22
+ "lm_head",
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "down_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
mistral-finetune/checkpoint-10/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c63d4ef034dce4230fe2889badf30ad55cee5ba9e385d1110ff7d2f35b5f7e0
3
+ size 340225224
mistral-finetune/checkpoint-10/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df68c3f6f11c9a0cc120521d605201a11d52103ddb67e67caf50ebe524a4f151
3
+ size 170951068
mistral-finetune/checkpoint-10/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b61f55cfd4c21c97ef9c110d90f7c3b398be35ef6c0cee4ee24bf0940d369c2
3
+ size 14244
mistral-finetune/checkpoint-10/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c70520427b653bb8423e280b7d7c2fe058746573b9bc95b7b9a1d6434d294f84
3
+ size 1064
mistral-finetune/checkpoint-10/trainer_state.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.025,
5
+ "eval_steps": 10,
6
+ "global_step": 10,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 2.4549098196392788e-05,
14
+ "loss": 1.5765,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "eval_loss": 1.4641923904418945,
20
+ "eval_runtime": 221.9956,
21
+ "eval_samples_per_second": 0.901,
22
+ "eval_steps_per_second": 0.113,
23
+ "step": 10
24
+ }
25
+ ],
26
+ "logging_steps": 10,
27
+ "max_steps": 500,
28
+ "num_input_tokens_seen": 0,
29
+ "num_train_epochs": 2,
30
+ "save_steps": 10,
31
+ "total_flos": 1726968299520000.0,
32
+ "trial_name": null,
33
+ "trial_params": null
34
+ }
mistral-finetune/checkpoint-10/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa60f08d6af67edbafca8b9cbcbb0067beec5a9a8336ba7c9d20d4d84336c11f
3
+ size 4600
mistral-finetune/checkpoint-100/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: filipealmeida/Mistral-7B-v0.1-sharded
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
mistral-finetune/checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "filipealmeida/Mistral-7B-v0.1-sharded",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "up_proj",
21
+ "v_proj",
22
+ "lm_head",
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "down_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
mistral-finetune/checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af310d5cf3b1351634e4e0b1f060023d3002be79a937fa5d0262942504088170
3
+ size 340225224
mistral-finetune/checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0db707e2ce9e6b240070f57c268f24aee523e03a159383bff52ab4e270e17587
3
+ size 170951068
mistral-finetune/checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fb35848be78a9672c2de9c9ea1cb1d4557f79a6caf73eb10ba23b4d7bd8a3fe
3
+ size 14244
mistral-finetune/checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:223c492754e7d0cc7c6aeaee1fe7206a93415033615b3379f11649bd0f09644e
3
+ size 1064
mistral-finetune/checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.25,
5
+ "eval_steps": 10,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 2.4549098196392788e-05,
14
+ "loss": 1.5765,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "eval_loss": 1.4641923904418945,
20
+ "eval_runtime": 221.9956,
21
+ "eval_samples_per_second": 0.901,
22
+ "eval_steps_per_second": 0.113,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.05,
27
+ "learning_rate": 2.404809619238477e-05,
28
+ "loss": 1.5681,
29
+ "step": 20
30
+ },
31
+ {
32
+ "epoch": 0.05,
33
+ "eval_loss": 1.4410793781280518,
34
+ "eval_runtime": 221.7333,
35
+ "eval_samples_per_second": 0.902,
36
+ "eval_steps_per_second": 0.113,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.07,
41
+ "learning_rate": 2.3547094188376757e-05,
42
+ "loss": 1.2801,
43
+ "step": 30
44
+ },
45
+ {
46
+ "epoch": 0.07,
47
+ "eval_loss": 1.4293081760406494,
48
+ "eval_runtime": 221.7604,
49
+ "eval_samples_per_second": 0.902,
50
+ "eval_steps_per_second": 0.113,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.1,
55
+ "learning_rate": 2.304609218436874e-05,
56
+ "loss": 1.5474,
57
+ "step": 40
58
+ },
59
+ {
60
+ "epoch": 0.1,
61
+ "eval_loss": 1.430722951889038,
62
+ "eval_runtime": 221.7555,
63
+ "eval_samples_per_second": 0.902,
64
+ "eval_steps_per_second": 0.113,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.12,
69
+ "learning_rate": 2.2545090180360722e-05,
70
+ "loss": 1.3972,
71
+ "step": 50
72
+ },
73
+ {
74
+ "epoch": 0.12,
75
+ "eval_loss": 1.4295932054519653,
76
+ "eval_runtime": 221.7379,
77
+ "eval_samples_per_second": 0.902,
78
+ "eval_steps_per_second": 0.113,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.15,
83
+ "learning_rate": 2.2044088176352705e-05,
84
+ "loss": 1.578,
85
+ "step": 60
86
+ },
87
+ {
88
+ "epoch": 0.15,
89
+ "eval_loss": 1.425429344177246,
90
+ "eval_runtime": 221.7329,
91
+ "eval_samples_per_second": 0.902,
92
+ "eval_steps_per_second": 0.113,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.17,
97
+ "learning_rate": 2.1543086172344688e-05,
98
+ "loss": 1.3322,
99
+ "step": 70
100
+ },
101
+ {
102
+ "epoch": 0.17,
103
+ "eval_loss": 1.4246026277542114,
104
+ "eval_runtime": 221.7499,
105
+ "eval_samples_per_second": 0.902,
106
+ "eval_steps_per_second": 0.113,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.2,
111
+ "learning_rate": 2.1042084168336674e-05,
112
+ "loss": 1.4031,
113
+ "step": 80
114
+ },
115
+ {
116
+ "epoch": 0.2,
117
+ "eval_loss": 1.4232592582702637,
118
+ "eval_runtime": 221.7409,
119
+ "eval_samples_per_second": 0.902,
120
+ "eval_steps_per_second": 0.113,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.23,
125
+ "learning_rate": 2.054108216432866e-05,
126
+ "loss": 1.454,
127
+ "step": 90
128
+ },
129
+ {
130
+ "epoch": 0.23,
131
+ "eval_loss": 1.4188882112503052,
132
+ "eval_runtime": 221.7396,
133
+ "eval_samples_per_second": 0.902,
134
+ "eval_steps_per_second": 0.113,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.25,
139
+ "learning_rate": 2.0040080160320643e-05,
140
+ "loss": 1.4341,
141
+ "step": 100
142
+ },
143
+ {
144
+ "epoch": 0.25,
145
+ "eval_loss": 1.416797161102295,
146
+ "eval_runtime": 221.7427,
147
+ "eval_samples_per_second": 0.902,
148
+ "eval_steps_per_second": 0.113,
149
+ "step": 100
150
+ }
151
+ ],
152
+ "logging_steps": 10,
153
+ "max_steps": 500,
154
+ "num_input_tokens_seen": 0,
155
+ "num_train_epochs": 2,
156
+ "save_steps": 10,
157
+ "total_flos": 1.72696829952e+16,
158
+ "trial_name": null,
159
+ "trial_params": null
160
+ }
mistral-finetune/checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa60f08d6af67edbafca8b9cbcbb0067beec5a9a8336ba7c9d20d4d84336c11f
3
+ size 4600
mistral-finetune/checkpoint-110/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: filipealmeida/Mistral-7B-v0.1-sharded
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
mistral-finetune/checkpoint-110/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "filipealmeida/Mistral-7B-v0.1-sharded",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "up_proj",
21
+ "v_proj",
22
+ "lm_head",
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "down_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
mistral-finetune/checkpoint-110/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a4a154192e76123afaf4cc8d24337b1a065618eedf4fbf61ca1797ecb2c4dd
3
+ size 340225224
mistral-finetune/checkpoint-110/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed59d79d82c25eba858eaf972b9148fc76e7a8c938933c444dcc4146edb66e3c
3
+ size 170951068
mistral-finetune/checkpoint-110/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de951edb99ec057e0535ef0ec8bb69b7c53da2e3e5d9da128bd471689d04a492
3
+ size 14244
mistral-finetune/checkpoint-110/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a98376fc2f0573046cc61f0f7d3d2abb920e8da027d876164c598937cdba2225
3
+ size 1064
mistral-finetune/checkpoint-110/trainer_state.json ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.275,
5
+ "eval_steps": 10,
6
+ "global_step": 110,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 2.4549098196392788e-05,
14
+ "loss": 1.5765,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "eval_loss": 1.4641923904418945,
20
+ "eval_runtime": 221.9956,
21
+ "eval_samples_per_second": 0.901,
22
+ "eval_steps_per_second": 0.113,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.05,
27
+ "learning_rate": 2.404809619238477e-05,
28
+ "loss": 1.5681,
29
+ "step": 20
30
+ },
31
+ {
32
+ "epoch": 0.05,
33
+ "eval_loss": 1.4410793781280518,
34
+ "eval_runtime": 221.7333,
35
+ "eval_samples_per_second": 0.902,
36
+ "eval_steps_per_second": 0.113,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.07,
41
+ "learning_rate": 2.3547094188376757e-05,
42
+ "loss": 1.2801,
43
+ "step": 30
44
+ },
45
+ {
46
+ "epoch": 0.07,
47
+ "eval_loss": 1.4293081760406494,
48
+ "eval_runtime": 221.7604,
49
+ "eval_samples_per_second": 0.902,
50
+ "eval_steps_per_second": 0.113,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.1,
55
+ "learning_rate": 2.304609218436874e-05,
56
+ "loss": 1.5474,
57
+ "step": 40
58
+ },
59
+ {
60
+ "epoch": 0.1,
61
+ "eval_loss": 1.430722951889038,
62
+ "eval_runtime": 221.7555,
63
+ "eval_samples_per_second": 0.902,
64
+ "eval_steps_per_second": 0.113,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.12,
69
+ "learning_rate": 2.2545090180360722e-05,
70
+ "loss": 1.3972,
71
+ "step": 50
72
+ },
73
+ {
74
+ "epoch": 0.12,
75
+ "eval_loss": 1.4295932054519653,
76
+ "eval_runtime": 221.7379,
77
+ "eval_samples_per_second": 0.902,
78
+ "eval_steps_per_second": 0.113,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.15,
83
+ "learning_rate": 2.2044088176352705e-05,
84
+ "loss": 1.578,
85
+ "step": 60
86
+ },
87
+ {
88
+ "epoch": 0.15,
89
+ "eval_loss": 1.425429344177246,
90
+ "eval_runtime": 221.7329,
91
+ "eval_samples_per_second": 0.902,
92
+ "eval_steps_per_second": 0.113,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.17,
97
+ "learning_rate": 2.1543086172344688e-05,
98
+ "loss": 1.3322,
99
+ "step": 70
100
+ },
101
+ {
102
+ "epoch": 0.17,
103
+ "eval_loss": 1.4246026277542114,
104
+ "eval_runtime": 221.7499,
105
+ "eval_samples_per_second": 0.902,
106
+ "eval_steps_per_second": 0.113,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.2,
111
+ "learning_rate": 2.1042084168336674e-05,
112
+ "loss": 1.4031,
113
+ "step": 80
114
+ },
115
+ {
116
+ "epoch": 0.2,
117
+ "eval_loss": 1.4232592582702637,
118
+ "eval_runtime": 221.7409,
119
+ "eval_samples_per_second": 0.902,
120
+ "eval_steps_per_second": 0.113,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.23,
125
+ "learning_rate": 2.054108216432866e-05,
126
+ "loss": 1.454,
127
+ "step": 90
128
+ },
129
+ {
130
+ "epoch": 0.23,
131
+ "eval_loss": 1.4188882112503052,
132
+ "eval_runtime": 221.7396,
133
+ "eval_samples_per_second": 0.902,
134
+ "eval_steps_per_second": 0.113,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.25,
139
+ "learning_rate": 2.0040080160320643e-05,
140
+ "loss": 1.4341,
141
+ "step": 100
142
+ },
143
+ {
144
+ "epoch": 0.25,
145
+ "eval_loss": 1.416797161102295,
146
+ "eval_runtime": 221.7427,
147
+ "eval_samples_per_second": 0.902,
148
+ "eval_steps_per_second": 0.113,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.28,
153
+ "learning_rate": 1.9539078156312626e-05,
154
+ "loss": 1.4684,
155
+ "step": 110
156
+ },
157
+ {
158
+ "epoch": 0.28,
159
+ "eval_loss": 1.4176369905471802,
160
+ "eval_runtime": 221.7309,
161
+ "eval_samples_per_second": 0.902,
162
+ "eval_steps_per_second": 0.113,
163
+ "step": 110
164
+ }
165
+ ],
166
+ "logging_steps": 10,
167
+ "max_steps": 500,
168
+ "num_input_tokens_seen": 0,
169
+ "num_train_epochs": 2,
170
+ "save_steps": 10,
171
+ "total_flos": 1.899665129472e+16,
172
+ "trial_name": null,
173
+ "trial_params": null
174
+ }
mistral-finetune/checkpoint-110/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa60f08d6af67edbafca8b9cbcbb0067beec5a9a8336ba7c9d20d4d84336c11f
3
+ size 4600
mistral-finetune/checkpoint-120/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: filipealmeida/Mistral-7B-v0.1-sharded
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
mistral-finetune/checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "filipealmeida/Mistral-7B-v0.1-sharded",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "up_proj",
21
+ "v_proj",
22
+ "lm_head",
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "down_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
mistral-finetune/checkpoint-120/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:304b78450733e7f3ebcfb1e54c544d2cffa6f9f4ed2c760b70beda2fe4db5315
3
+ size 340225224
mistral-finetune/checkpoint-120/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b4fdaa9307c3654b770d22104b0603837a78c7f2b872c3ffdf0973e4bfa3234
3
+ size 170951068
mistral-finetune/checkpoint-120/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3785253b2a2cd1c32045ff55ab786308b69aa6389827f0371daf27f9e5310394
3
+ size 14244
mistral-finetune/checkpoint-120/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9791fab4c3a763dba5281d6ca071c917b80084acdd9a02fabb44788c90d8f4b
3
+ size 1064
mistral-finetune/checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.3,
5
+ "eval_steps": 10,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 2.4549098196392788e-05,
14
+ "loss": 1.5765,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "eval_loss": 1.4641923904418945,
20
+ "eval_runtime": 221.9956,
21
+ "eval_samples_per_second": 0.901,
22
+ "eval_steps_per_second": 0.113,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.05,
27
+ "learning_rate": 2.404809619238477e-05,
28
+ "loss": 1.5681,
29
+ "step": 20
30
+ },
31
+ {
32
+ "epoch": 0.05,
33
+ "eval_loss": 1.4410793781280518,
34
+ "eval_runtime": 221.7333,
35
+ "eval_samples_per_second": 0.902,
36
+ "eval_steps_per_second": 0.113,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.07,
41
+ "learning_rate": 2.3547094188376757e-05,
42
+ "loss": 1.2801,
43
+ "step": 30
44
+ },
45
+ {
46
+ "epoch": 0.07,
47
+ "eval_loss": 1.4293081760406494,
48
+ "eval_runtime": 221.7604,
49
+ "eval_samples_per_second": 0.902,
50
+ "eval_steps_per_second": 0.113,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.1,
55
+ "learning_rate": 2.304609218436874e-05,
56
+ "loss": 1.5474,
57
+ "step": 40
58
+ },
59
+ {
60
+ "epoch": 0.1,
61
+ "eval_loss": 1.430722951889038,
62
+ "eval_runtime": 221.7555,
63
+ "eval_samples_per_second": 0.902,
64
+ "eval_steps_per_second": 0.113,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.12,
69
+ "learning_rate": 2.2545090180360722e-05,
70
+ "loss": 1.3972,
71
+ "step": 50
72
+ },
73
+ {
74
+ "epoch": 0.12,
75
+ "eval_loss": 1.4295932054519653,
76
+ "eval_runtime": 221.7379,
77
+ "eval_samples_per_second": 0.902,
78
+ "eval_steps_per_second": 0.113,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.15,
83
+ "learning_rate": 2.2044088176352705e-05,
84
+ "loss": 1.578,
85
+ "step": 60
86
+ },
87
+ {
88
+ "epoch": 0.15,
89
+ "eval_loss": 1.425429344177246,
90
+ "eval_runtime": 221.7329,
91
+ "eval_samples_per_second": 0.902,
92
+ "eval_steps_per_second": 0.113,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.17,
97
+ "learning_rate": 2.1543086172344688e-05,
98
+ "loss": 1.3322,
99
+ "step": 70
100
+ },
101
+ {
102
+ "epoch": 0.17,
103
+ "eval_loss": 1.4246026277542114,
104
+ "eval_runtime": 221.7499,
105
+ "eval_samples_per_second": 0.902,
106
+ "eval_steps_per_second": 0.113,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.2,
111
+ "learning_rate": 2.1042084168336674e-05,
112
+ "loss": 1.4031,
113
+ "step": 80
114
+ },
115
+ {
116
+ "epoch": 0.2,
117
+ "eval_loss": 1.4232592582702637,
118
+ "eval_runtime": 221.7409,
119
+ "eval_samples_per_second": 0.902,
120
+ "eval_steps_per_second": 0.113,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.23,
125
+ "learning_rate": 2.054108216432866e-05,
126
+ "loss": 1.454,
127
+ "step": 90
128
+ },
129
+ {
130
+ "epoch": 0.23,
131
+ "eval_loss": 1.4188882112503052,
132
+ "eval_runtime": 221.7396,
133
+ "eval_samples_per_second": 0.902,
134
+ "eval_steps_per_second": 0.113,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.25,
139
+ "learning_rate": 2.0040080160320643e-05,
140
+ "loss": 1.4341,
141
+ "step": 100
142
+ },
143
+ {
144
+ "epoch": 0.25,
145
+ "eval_loss": 1.416797161102295,
146
+ "eval_runtime": 221.7427,
147
+ "eval_samples_per_second": 0.902,
148
+ "eval_steps_per_second": 0.113,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.28,
153
+ "learning_rate": 1.9539078156312626e-05,
154
+ "loss": 1.4684,
155
+ "step": 110
156
+ },
157
+ {
158
+ "epoch": 0.28,
159
+ "eval_loss": 1.4176369905471802,
160
+ "eval_runtime": 221.7309,
161
+ "eval_samples_per_second": 0.902,
162
+ "eval_steps_per_second": 0.113,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.3,
167
+ "learning_rate": 1.903807615230461e-05,
168
+ "loss": 1.2462,
169
+ "step": 120
170
+ },
171
+ {
172
+ "epoch": 0.3,
173
+ "eval_loss": 1.4165884256362915,
174
+ "eval_runtime": 221.7346,
175
+ "eval_samples_per_second": 0.902,
176
+ "eval_steps_per_second": 0.113,
177
+ "step": 120
178
+ }
179
+ ],
180
+ "logging_steps": 10,
181
+ "max_steps": 500,
182
+ "num_input_tokens_seen": 0,
183
+ "num_train_epochs": 2,
184
+ "save_steps": 10,
185
+ "total_flos": 2.072361959424e+16,
186
+ "trial_name": null,
187
+ "trial_params": null
188
+ }
mistral-finetune/checkpoint-120/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa60f08d6af67edbafca8b9cbcbb0067beec5a9a8336ba7c9d20d4d84336c11f
3
+ size 4600
mistral-finetune/checkpoint-20/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: filipealmeida/Mistral-7B-v0.1-sharded
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
mistral-finetune/checkpoint-20/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "filipealmeida/Mistral-7B-v0.1-sharded",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "up_proj",
21
+ "v_proj",
22
+ "lm_head",
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "down_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
mistral-finetune/checkpoint-20/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a8ea207882ba8096c212ea65254f666345a895ad5518a92200e633d853650ac
3
+ size 340225224
mistral-finetune/checkpoint-20/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0086171fbd835609a4716345d0f75122fbeed52d410553a73fd35457f1b3ddff
3
+ size 170951068
mistral-finetune/checkpoint-20/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2418da8f729fea94d8af00ab12b2b4d7369a07a94da147759498d89b5d74f6ce
3
+ size 14244
mistral-finetune/checkpoint-20/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9aa8d6b210f5857d64e00d2d5b5bf8d1606b011a7810b84dbbb874aedd0d56e
3
+ size 1064
mistral-finetune/checkpoint-20/trainer_state.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.05,
5
+ "eval_steps": 10,
6
+ "global_step": 20,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 2.4549098196392788e-05,
14
+ "loss": 1.5765,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "eval_loss": 1.4641923904418945,
20
+ "eval_runtime": 221.9956,
21
+ "eval_samples_per_second": 0.901,
22
+ "eval_steps_per_second": 0.113,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.05,
27
+ "learning_rate": 2.404809619238477e-05,
28
+ "loss": 1.5681,
29
+ "step": 20
30
+ },
31
+ {
32
+ "epoch": 0.05,
33
+ "eval_loss": 1.4410793781280518,
34
+ "eval_runtime": 221.7333,
35
+ "eval_samples_per_second": 0.902,
36
+ "eval_steps_per_second": 0.113,
37
+ "step": 20
38
+ }
39
+ ],
40
+ "logging_steps": 10,
41
+ "max_steps": 500,
42
+ "num_input_tokens_seen": 0,
43
+ "num_train_epochs": 2,
44
+ "save_steps": 10,
45
+ "total_flos": 3453936599040000.0,
46
+ "trial_name": null,
47
+ "trial_params": null
48
+ }
mistral-finetune/checkpoint-20/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa60f08d6af67edbafca8b9cbcbb0067beec5a9a8336ba7c9d20d4d84336c11f
3
+ size 4600
mistral-finetune/checkpoint-30/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: filipealmeida/Mistral-7B-v0.1-sharded
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
mistral-finetune/checkpoint-30/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "filipealmeida/Mistral-7B-v0.1-sharded",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "up_proj",
21
+ "v_proj",
22
+ "lm_head",
23
+ "q_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "down_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
mistral-finetune/checkpoint-30/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b20f7e366d48ae58f58911c8a8b1a34de310010037a1dc3f15e481b77a9b78dc
3
+ size 340225224
mistral-finetune/checkpoint-30/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d78cae13032442b0c5f29a7138cc9f6cc8ca89798ad01096f50dc49163b0740
3
+ size 170951068
mistral-finetune/checkpoint-30/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25a381c2e890979e6338e01c3198be40d18103ef1cf97f05c682cfd1dc6ee504
3
+ size 14244
mistral-finetune/checkpoint-30/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e32004f632ac46e32797254a8bbdba4c1bc2a634bf0de930a2f2c3db5631a8f
3
+ size 1064
mistral-finetune/checkpoint-30/trainer_state.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.075,
5
+ "eval_steps": 10,
6
+ "global_step": 30,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 2.4549098196392788e-05,
14
+ "loss": 1.5765,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "eval_loss": 1.4641923904418945,
20
+ "eval_runtime": 221.9956,
21
+ "eval_samples_per_second": 0.901,
22
+ "eval_steps_per_second": 0.113,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.05,
27
+ "learning_rate": 2.404809619238477e-05,
28
+ "loss": 1.5681,
29
+ "step": 20
30
+ },
31
+ {
32
+ "epoch": 0.05,
33
+ "eval_loss": 1.4410793781280518,
34
+ "eval_runtime": 221.7333,
35
+ "eval_samples_per_second": 0.902,
36
+ "eval_steps_per_second": 0.113,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.07,
41
+ "learning_rate": 2.3547094188376757e-05,
42
+ "loss": 1.2801,
43
+ "step": 30
44
+ },
45
+ {
46
+ "epoch": 0.07,
47
+ "eval_loss": 1.4293081760406494,
48
+ "eval_runtime": 221.7604,
49
+ "eval_samples_per_second": 0.902,
50
+ "eval_steps_per_second": 0.113,
51
+ "step": 30
52
+ }
53
+ ],
54
+ "logging_steps": 10,
55
+ "max_steps": 500,
56
+ "num_input_tokens_seen": 0,
57
+ "num_train_epochs": 2,
58
+ "save_steps": 10,
59
+ "total_flos": 5180904898560000.0,
60
+ "trial_name": null,
61
+ "trial_params": null
62
+ }
mistral-finetune/checkpoint-30/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa60f08d6af67edbafca8b9cbcbb0067beec5a9a8336ba7c9d20d4d84336c11f
3
+ size 4600
mistral-finetune/checkpoint-40/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: filipealmeida/Mistral-7B-v0.1-sharded
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0