--- license: apache-2.0 tags: - moe - merge - mergekit - lazymergekit - phi3_mergekit - microsoft/Phi-3-mini-4k-instruct base_model: - microsoft/Phi-3-mini-4k-instruct - microsoft/Phi-3-mini-4k-instruct --- # Phi3Mix Phi3Mix is a Mixture of Experts (MoE) made with the following models using [Phi3_LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) * [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) ## 🧩 Configuration ```yaml base_model: microsoft/Phi-3-mini-4k-instruct gate_mode: cheap_embed experts_per_token: 1 dtype: float16 experts: - source_model: microsoft/Phi-3-mini-4k-instruct positive_prompts: ["research, logic, math, science"] - source_model: microsoft/Phi-3-mini-4k-instruct positive_prompts: ["creative, art"] ``` ## 💻 Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = "HassanStar/Phi3Mix" tokenizer = AutoTokenizer.from_pretrained(model) model = AutoModelForCausalLM.from_pretrained( model, trust_remote_code=True, ) prompt="How many continents are there?" input = f"<|system|>You are a helpful AI assistant.<|end|><|user|>{prompt}<|assistant|>" tokenized_input = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(tokenized_input, max_new_tokens=128, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(tokenizer.decode(outputs[0])) ```