--- library_name: transformers tags: [] --- ## AfriSenti Kinyarwanda Sentiment Regressor Description Takes a text and predicts the sentiment value between -1 (Negative) to 1 (Positive) with 0 being Neutral. Regression Value Description: | Value | Sentiment | |--|--| | -1 | Negative | | 0 | Neutral | | 1 | Positive | ## How to Get Started with the Model Use the code below to get started with the model. ``` import math import torch import pandas as pd from transformers import AutoModelForSequenceClassification, AutoTokenizer BATCH_SIZE = 32 ds = pd.read_csv('test.csv') BASE_MODEL = 'HausaNLP/afrisenti-kin-regression' device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL) nb_batches = math.ceil(len(ds)/BATCH_SIZE) y_preds = [] for i in range(nb_batches): input_texts = ds[i * BATCH_SIZE: (i+1) * BATCH_SIZE]["tweet"] encoded = tokenizer(input_texts, truncation=True, padding="max_length", max_length=256, return_tensors="pt").to(device) y_preds += model(**encoded).logits.reshape(-1).tolist() df = pd.DataFrame([ds['tweet'], ds['label'], y_preds], ["Text", "Label", "Prediction"]).T df.to_csv('predictions.csv', index=False) ```