File size: 1,285 Bytes
1942b4f
 
 
 
 
2329acd
1942b4f
2329acd
1942b4f
2329acd
1942b4f
2329acd
 
 
 
 
1942b4f
 
 
 
 
 
2329acd
 
 
 
 
1942b4f
2329acd
 
 
1942b4f
2329acd
1942b4f
2329acd
 
1942b4f
2329acd
 
1942b4f
2329acd
 
 
 
1942b4f
2329acd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
library_name: transformers
tags: []
---

## AfriSenti Nigerian Pidgin Sentiment Regressor Description

Takes a text and predicts the sentiment value between -1 (Negative) to 1 (Positive) with 0 being Neutral.

Regression Value Description:

| Value | Sentiment |
|--|--|
| -1 | Negative |
| 0 | Neutral |
| 1 | Positive |


## How to Get Started with the Model

Use the code below to get started with the model.

```
import math
import torch
import pandas as pd
from transformers import AutoModelForSequenceClassification, AutoTokenizer

BATCH_SIZE = 32
ds = pd.read_csv('test.csv')
BASE_MODEL = 'HausaNLP/afrisenti-pcm-regression'

device = 'cuda' if torch.cuda.is_available() else 'cpu'

tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL)

nb_batches = math.ceil(len(ds)/BATCH_SIZE)
y_preds = []

for i in range(nb_batches):
  input_texts = ds[i * BATCH_SIZE: (i+1) * BATCH_SIZE]["tweet"]
  encoded = tokenizer(input_texts, truncation=True, padding="max_length", max_length=256, return_tensors="pt").to(device)
  y_preds += model(**encoded).logits.reshape(-1).tolist()

df = pd.DataFrame([ds['tweet'], ds['label'], y_preds], ["Text", "Label", "Prediction"]).T
df.to_csv('predictions.csv', index=False)
```