Fact_Checker / app.py
Krish Patel
Seperated knowledge graph and Model responses
4adafc2
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from final import predict_news, get_gemini_analysis
import os
from tempfile import NamedTemporaryFile
from knowledge_graph_generator import KnowledgeGraphBuilder
import networkx as nx
import plotly.graph_objects as go
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["http://localhost:5173"], # Your React app's URL
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Rest of your code remains the same
class NewsInput(BaseModel):
text: str
@app.post("/analyze")
async def analyze_news(news: NewsInput):
prediction = predict_news(news.text)
gemini_analysis = get_gemini_analysis(news.text)
return {
"prediction": prediction,
"detailed_analysis": gemini_analysis
}
# @app.post("/detect-deepfake")
# async def detect_deepfake(image: UploadFile = File(...)):
# try:
# # Save uploaded image temporarily
# with NamedTemporaryFile(delete=False, suffix='.jpg') as temp_file:
# contents = await image.read()
# temp_file.write(contents)
# temp_file_path = temp_file.name
# # Use your existing deepfake detection function
# from deepfake2.testing2 import predict_image # Use your existing function
# result = predict_image(temp_file_path)
# # Clean up temp file
# os.remove(temp_file_path)
# return result
# except Exception as e:
# return {"error": str(e)}, 500
@app.post("/detect-deepfake")
async def detect_deepfake(file: UploadFile = File(...)):
try:
# Save uploaded file temporarily
with NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
contents = await file.read()
temp_file.write(contents)
temp_file_path = temp_file.name
# Import functions from testing2.py
from deepfake2.testing2 import predict_image, predict_video
# Use appropriate function based on file type
if file.filename.lower().endswith('.mp4'):
result = predict_video(temp_file_path)
file_type = "video"
else:
result = predict_image(temp_file_path)
file_type = "image"
# Clean up temp file
os.remove(temp_file_path)
return {
"result": result,
"file_type": file_type
}
except Exception as e:
return {"error": str(e)}, 500
@app.post("/generate-knowledge-graph")
async def generate_knowledge_graph(news: NewsInput):
kg_builder = KnowledgeGraphBuilder()
is_fake = predict_news(news.text) == "FAKE"
kg_builder.update_knowledge_graph(news.text, not is_fake)
pos = nx.spring_layout(kg_builder.knowledge_graph)
# Create edge traces with different colors
edge_trace = go.Scatter(
x=[], y=[],
line=dict(
width=2,
color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)' # Using rgba for transparency
),
hoverinfo='none',
mode='lines'
)
node_trace = go.Scatter(
x=[], y=[],
mode='markers+text',
hoverinfo='text',
textposition='top center',
marker=dict(
size=15,
color='white',
line=dict(width=2, color='black')
),
text=[]
)
# Add edges to visualization
for edge in kg_builder.knowledge_graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_trace['x'] += (x0, x1, None)
edge_trace['y'] += (y0, y1, None)
# Add nodes to visualization
for node in kg_builder.knowledge_graph.nodes():
x, y = pos[node]
node_trace['x'] += (x,)
node_trace['y'] += (y,)
node_trace['text'] += (node,)
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0,l=0,r=0,t=0),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)'
))
return fig.to_html()