File size: 12,006 Bytes
06b60c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: 'The Alavas worked themselves to the bone in the last period , and English
and San Emeterio ( 65-75 ) had already made it clear that they were not going
to let anyone take away what they had earned during the first thirty minutes . '
- text: 'To break the uncomfortable silence , Haney began to talk . '
- text: 'For the treatment of non-small cell lung cancer , the effects of Alimta were
compared with those of docetaxel ( another anticancer medicine ) in one study
involving 571 patients with locally advanced or metastatic disease who had received
chemotherapy in the past . '
- text: 'As we all know , a few minutes before the end of the game ( that their team
had already won ) , both players deliberately wasted time which made the referee
show the second yellow card to both of them . '
- text: 'In contrast , patients whose cancer was affecting squamous cells had shorter
survival times if they received Alimta . '
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | <ul><li>'3 -RRB- Republican congressional representatives , because of their belief in a minimalist state , are less willing to engage in local benefit-seeking than are Democratic members of Congress . '</li><li>'That is the way the system works . '</li><li>'Duck swarms . '</li></ul> |
| 2 | <ul><li>'It explains how the Committee for Medicinal Products for Veterinary Use ( CVMP ) assessed the studies performed , to reach their recommendations on how to use the medicine . '</li><li>'Tricks such as those of Alonso and Ramos before the Ajax demonstrate wittiness but not the will to get remove of a sanction . '</li><li>'The next day , Sunday , the hangover reminded Haney where he had been the night before . '</li></ul> |
| 3 | <ul><li>'If it is , it will be treated as an operator , if it is not , it will be treated as a user function . '</li><li>'Back in the chase car , we drove around some more , got stuck in a ditch , enlisted the aid of a local farmer to get out the trailer hitch and pull us out of the ditch . '</li><li>"It was the most exercise we 'd had all morning and it was followed by our driving immediately to the nearest watering hole . "</li></ul> |
| 5 | <ul><li>'The discovery of a strange bacteria that can use arsenic as one of its nutrients widens the scope for finding new forms of life on Earth and possibly beyond . '</li><li>'I felt the temblor begin and glanced at the table next to mine , smiled that guilty smile and we both mouthed the words , `` Earth-quake ! `` together . '</li><li>'Already two major pharmaceutical companies , the Squibb unit of Bristol-Myers Squibb Co. and Hoffmann-La Roche Inc. , are collaborating with gene hunters to turn the anticipated cascade of discoveries into predictive tests and , maybe , new therapies . '</li></ul> |
| 0 | <ul><li>'Prior to 1932 , the pattern was nearly the opposite . '</li><li>'A minor contrast to Costa Rica , comparing the 22 players called by both countries for the friendly game today , at 3:05 pm at the National Stadium in San Jose . '</li><li>'Never in my life have I been so frightened . '</li></ul> |
| 4 | <ul><li>'`` To ring for even one service at this tower , we have to scrape , `` says Mr. Hammond , a retired water-authority worker . `` '</li><li>'It is a passion that usually stays in the tower , however . '</li><li>'One writer , signing his letter as `` Red-blooded , balanced male , `` remarked on the `` frequency of women fainting in peals , `` and suggested that they `` settle back into their traditional role of making tea at meetings . `` '</li></ul> |
| 1 | <ul><li>'Bribe by bribe , Mr. Sternberg and his co-author , Matthew C. Harrison Jr. , lead us along the path Wedtech traveled , from its inception as a small manufacturing company to the status of full-fledged defense contractor , entrusted with the task of producing vital equipment for the Army and Navy . '</li><li>"kalgebra 's console is useful as a calculator . "</li><li>'Then a wild thought ran circles through his clouded brain . '</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("HelgeKn/SemEval-multi-class-10")
# Run inference
preds = model("To break the uncomfortable silence , Haney began to talk . ")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 4 | 28.1286 | 74 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 10 |
| 1 | 10 |
| 2 | 10 |
| 3 | 10 |
| 4 | 10 |
| 5 | 10 |
| 6 | 10 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0057 | 1 | 0.2488 | - |
| 0.2857 | 50 | 0.2041 | - |
| 0.5714 | 100 | 0.1094 | - |
| 0.8571 | 150 | 0.0478 | - |
| 1.1429 | 200 | 0.0378 | - |
| 1.4286 | 250 | 0.0089 | - |
| 1.7143 | 300 | 0.0036 | - |
| 2.0 | 350 | 0.0029 | - |
### Framework Versions
- Python: 3.9.13
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.36.0
- PyTorch: 2.1.1+cpu
- Datasets: 2.15.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |