data_root = '/root/autodl-tmp/ui_dataset' import logging import os from collections import OrderedDict import torch from torch.nn.parallel import DistributedDataParallel import random import cv2 import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import ( datasets, MetadataCatalog, get_detection_dataset_dicts, build_detection_test_loader, build_detection_train_loader, ) from detectron2.engine import default_argument_parser, default_setup, default_writers, launch from detectron2.evaluation import ( CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, LVISEvaluator, PascalVOCDetectionEvaluator, SemSegEvaluator, inference_on_dataset, print_csv_format, ) from detectron2.modeling import build_model from detectron2.solver import build_lr_scheduler, build_optimizer from detectron2.utils.events import EventStorage from icecream import ic, install install() ic.configureOutput(includeContext=True, contextAbsPath=True) logger = logging.getLogger("detectron2") def visualize(dataset_name='valid_ui', num=4, iter=0): if not os.path.exists('./imgs'): os.mkdir('./imgs') metadata = MetadataCatalog.get(dataset_name) dataset = get_detection_dataset_dicts(dataset_name) for i, d in enumerate(random.sample(dataset, num)): img = cv2.imread(d["file_name"]) visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, scale=0.5) vis = visualizer.draw_dataset_dict(d) cv2.imwrite(f'./imgs/{iter}_{dataset_name}_{i}.png', vis.get_image()[:, :, ::-1]) def get_evaluator(cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: evaluator_list.append( SemSegEvaluator( dataset_name, distributed=True, output_dir=output_folder, ) ) if evaluator_type in ["coco", "coco_panoptic_seg"]: evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) if evaluator_type == "coco_panoptic_seg": evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) if evaluator_type == "cityscapes_instance": return CityscapesInstanceEvaluator(dataset_name) if evaluator_type == "cityscapes_sem_seg": return CityscapesSemSegEvaluator(dataset_name) if evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) if evaluator_type == "lvis": return LVISEvaluator(dataset_name, cfg, True, output_folder) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type) ) if len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) def do_test(cfg, model, storage=None): results = OrderedDict() for dataset_name in cfg.DATASETS.TEST: data_loader = build_detection_test_loader(cfg, dataset_name) evaluator = get_evaluator( cfg, dataset_name, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) ) results_i = inference_on_dataset(model, data_loader, evaluator) results[dataset_name] = results_i if comm.is_main_process(): logger.info("Evaluation results for {} in csv format:".format(dataset_name)) print_csv_format(results_i) # dump to storage, save to tensorboard if storage != None: for key, value in results_i.items(): # key = bbox / segm; value = {'AP': xx, 'APm': xx, ...} logging.info(f'key value: {key}, {value}') logging.info(f'key: {key}') out_aps_dict = {} for k, v in value.items(): k = dataset_name + '_' + k out_aps_dict[k] = v # print('**{k: v.item() for k, v in comm.reduce_dict(results_i).items()}\n', type(**{k: v.item() for k, v in comm.reduce_dict(results_i).items()})) storage.put_scalars(**out_aps_dict) if len(results) == 1: results = list(results.values())[0] return results def do_train(cfg, model, resume=False): model.train() optimizer = build_optimizer(cfg, model) scheduler = build_lr_scheduler(cfg, optimizer) checkpointer = DetectionCheckpointer( model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler ) start_iter = ( checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1 ) max_iter = cfg.SOLVER.MAX_ITER periodic_checkpointer = PeriodicCheckpointer( checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter ) writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else [] # compared to "train_net.py", we do not support accurate timing and # precise BN here, because they are not trivial to implement in a small training loop data_loader = build_detection_train_loader(cfg) logger.info("Starting training from iteration {}".format(start_iter)) with EventStorage(start_iter) as storage: for data, iteration in zip(data_loader, range(start_iter, max_iter)): storage.iter = iteration loss_dict = model(data) losses = sum(loss_dict.values()) assert torch.isfinite(losses).all(), loss_dict loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()} losses_reduced = sum(loss for loss in loss_dict_reduced.values()) if comm.is_main_process(): storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad() losses.backward() optimizer.step() storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) scheduler.step() if ( cfg.TEST.EVAL_PERIOD > 0 and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0 and iteration != max_iter - 1 ): visualize('valid_ui', 5, iteration) visualize('train_ui', 5, iteration) do_test(cfg, model, storage) # Compared to "train_net.py", the test results are not dumped to EventStorage comm.synchronize() if iteration - start_iter > 5 and ( (iteration + 1) % 20 == 0 or iteration == max_iter - 1 ): for writer in writers: writer.write() periodic_checkpointer.step(iteration) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup( cfg, args ) # if you don't like any of the default setup, write your own setup code return cfg def main(args): cfg = setup(args) datasets.register_coco_instances("train_ui", {}, f"{data_root}/train/_annotations.coco.json", f"{data_root}/train") datasets.register_coco_instances("train_dora_ui", {}, f"{data_root.replace('ui_dataset', 'dora_dataset')}/train.json", f"{data_root.replace('ui_dataset', 'dora_dataset')}/train") datasets.register_coco_instances("test_ui", {}, f"{data_root}/test/_annotations.coco.json", f"{data_root}/test") datasets.register_coco_instances("valid_ui", {}, f"{data_root}/valid/_annotations.coco.json", f"{data_root}/valid") datasets.register_coco_instances("valid_dora_ui", {}, f"{data_root.replace('ui_dataset', 'dora_dataset')}/val.json", f"{data_root.replace('ui_dataset', 'dora_dataset')}/train") print('done registering datasets') model = build_model(cfg) logger.info("Model:\n{}".format(model)) if args.eval_only: DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) return do_test(cfg, model) distributed = comm.get_world_size() > 1 if distributed: model = DistributedDataParallel( model, device_ids=[comm.get_local_rank()], broadcast_buffers=False ) do_train(cfg, model, resume=args.resume) return do_test(cfg, model) if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )