{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb05557ff40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb055588040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb0555880d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb055588160>", "_build": "<function ActorCriticPolicy._build at 0x7eb0555881f0>", "forward": "<function ActorCriticPolicy.forward at 0x7eb055588280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb055588310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb0555883a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb055588430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb0555884c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb055588550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb0555885e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb05557afc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730983497630467439, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAANoEsr2IocA+Xa0TPh/yG76KKPA83vfuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGkD5uqFRHiMAWyUTegDjAF0lEdAmxDwFC9h7XV9lChoBkdAcO/lNUOuq2gHTasBaAhHQJsUBgDzRQd1fZQoaAZHQHFYL83uNPxoB00YAWgIR0CbF9sgMc6vdX2UKGgGR0Bwh4mgJ1JUaAdNQAFoCEdAmxm/Olfqo3V9lChoBkdAcGMcIZ62OWgHS/xoCEdAmxsgFxGUfXV9lChoBkdAbrXGZNO/L2gHS/hoCEdAmxx77wazeHV9lChoBkdAcGydXDFZPmgHTRcBaAhHQJsfQbEP1+R1fZQoaAZHQHBgPdEb5uZoB00vAWgIR0CbIO1ndweedX2UKGgGR0BvG8PpY9xIaAdNDQFoCEdAmyJu0PYnOXV9lChoBkdAbbDE3Kji42gHS+1oCEdAmyO6HTI/7nV9lChoBkdAb1hsUIsyz2gHS/ZoCEdAmyZEOiFj/nV9lChoBkdAZY2Y/FBIF2gHTegDaAhHQJss8v114gR1fZQoaAZHQHCOECeVcD9oB00YAWgIR0CbLoLTQVsUdX2UKGgGR0BwxIp8WsRyaAdNCAFoCEdAmzAFxwQ18HV9lChoBkdAcCyHoX9BKWgHTS4BaAhHQJsxsCOmzjZ1fZQoaAZHQG/d0I9kjHJoB00oAWgIR0CbNH26ClJpdX2UKGgGR0BxxeqPwNLEaAdL6WgIR0CbNcDZ13dLdX2UKGgGR0BvG+CyyD7JaAdNKAFoCEdAmzdsGcFyJnV9lChoBkdAbD/pOerdWWgHTQICaAhHQJs7cC6pYLd1fZQoaAZHQHDcS13MY/FoB0viaAhHQJs8qAEt/Wl1fZQoaAZHQG4B4ubqhURoB0vuaAhHQJs992fTTfB1fZQoaAZHQG7qCd8Rcu9oB0vwaAhHQJs/TqPfbbl1fZQoaAZHQGLMwW3z+WJoB03oA2gIR0CbSAwIMSbpdX2UKGgGR0BtcOEoOQQuaAdNEQFoCEdAm0ug/xDst3V9lChoBkdAcSWh6jWTYGgHTRABaAhHQJtNIUSIxg11fZQoaAZHQGYG2Xsw+MZoB03oA2gIR0CbU+EP1+RYdX2UKGgGR0BygHQ6ZH/caAdNAQFoCEdAm1VS3w1BMXV9lChoBkdAcFM71qWTo2gHS/doCEdAm1bC5Etuk3V9lChoBkdARspOHnEET2gHS+9oCEdAm1lhnBciW3V9lChoBkdAcG312aDwpmgHS/VoCEdAm1q5HAh0Q3V9lChoBkdAcWPqSowVTWgHTS0BaAhHQJtcayyD7Il1fZQoaAZHQG1ichTwUg1oB0vvaAhHQJtdt0KZ2IR1fZQoaAZHQHAWXhCMPz5oB00ZAWgIR0CbYG+pOvdNdX2UKGgGR0BwDp5rxiG4aAdL4mgIR0CbYak+X7cgdX2UKGgGR0BxR1da+vhZaAdNZwFoCEdAm2OsLSeAeHV9lChoBkdAcnfOEdvKl2gHS/xoCEdAm2Yx3Roh6nV9lChoBkdAcRdab4Ju22gHTRgBaAhHQJtnw2sJY1Z1fZQoaAZHQHDlVGPPszFoB0v9aAhHQJtpJd2PkrB1fZQoaAZHQHAk3LJSzgNoB0v2aAhHQJtqeZJCjUN1fZQoaAZHQHFNYGMXJo1oB0v8aAhHQJttCLuQZGd1fZQoaAZHQHCEY0EX+ERoB00ZAWgIR0CbbpK508vFdX2UKGgGR0Be3NR3u/lAaAdN6ANoCEdAm3YMN6PbPHV9lChoBkdAcku3nZCfH2gHTQ0BaAhHQJt36NQ0oBt1fZQoaAZHQG9p98JD3M9oB0v0aAhHQJt5y8BdUsF1fZQoaAZHQETuBdUsFt9oB0uzaAhHQJt7J9fCyhV1fZQoaAZHQG9pR3eN1hdoB002AWgIR0CbfrTot+TedX2UKGgGR0BtUHTCtRvWaAdNBAFoCEdAm4Agj+rEL3V9lChoBkdAb0plmvnr6mgHS/NoCEdAm4F5SaVlgHV9lChoBkdAcEZ7tzCDVmgHS+5oCEdAm4LClN1yNnV9lChoBkdAcqR9h7Vrh2gHTUYBaAhHQJuFwNG3F1l1fZQoaAZHQHIrIyO7xutoB0v8aAhHQJuHH7/GVA11fZQoaAZHQHK6zqv/zatoB0vfaAhHQJuIWGfwqiJ1fZQoaAZHQHGqFj3Ehq1oB02mAWgIR0Cbi+SV4X41dX2UKGgGR0BwwiT2WY4RaAdNIAFoCEdAm419ytFKCnV9lChoBkdAbwga72+PBGgHS/loCEdAm47VXJYDDHV9lChoBkdAceY/z8P4EmgHTUIBaAhHQJuR002tMf11fZQoaAZHQG7uZxzaK1poB0v0aAhHQJuTKSowVTJ1fZQoaAZHQG+zrEk0JnhoB00cAWgIR0CblL+8XenAdX2UKGgGR0BxPQfdRBNVaAdNmgJoCEdAm5mqOxSpBHV9lChoBkdAckfLEDQqqmgHS+1oCEdAm5r3solUqHV9lChoBkdAcP80gr6LwWgHTRMBaAhHQJucfGipNsZ1fZQoaAZHQHE0kAtFrmBoB0v6aAhHQJud36LwWnF1fZQoaAZHQHDHUVBUrCpoB000AWgIR0CboL9y925hdX2UKGgGR0BwwfpV0cOtaAdNKgFoCEdAm6JpL7Gec3V9lChoBkdAcR3LMLWqcWgHTRMBaAhHQJuj8oXsPat1fZQoaAZHQHGEE1/DtPZoB0vuaAhHQJum2OLiuMd1fZQoaAZHQHHP4EGJN0xoB01lAWgIR0CbqWX9BKL9dX2UKGgGR0Bh+IffXPJJaAdN6ANoCEdAm7JGSyMUAXV9lChoBkdAZtNQnhKlHmgHTegDaAhHQJu5AYQ8OkN1fZQoaAZHQHGVM/IKc/doB00CAWgIR0CbunVGkN4JdX2UKGgGR0BktUfaHsTnaAdN6ANoCEdAm8EgzLwF1XV9lChoBkdAcWbuhK15SmgHS+1oCEdAm8J5T/ACXHV9lChoBkdAb+DP/JeVs2gHS/JoCEdAm8T1Wn0kGHV9lChoBkdAcI2yYoiLVGgHS/doCEdAm8ZZ8neBQXV9lChoBkdAbiuo7V8TjGgHS+xoCEdAm8ehLXcxkHV9lChoBkdAcWYu0kWykmgHTR4BaAhHQJvJNCBwuNB1fZQoaAZHQG96/V7Qb+9oB00WAWgIR0Cby+XKKYRedX2UKGgGR0BwLGiN83MqaAdL32gIR0CbzRtUXHindX2UKGgGR0BBpoZqEeySaAdLr2gIR0CbzhBdld1MdX2UKGgGR0BlLAX668QJaAdN6ANoCEdAm9T2JvYOD3V9lChoBkdAch3RRuTA32gHS/5oCEdAm9ZaUzKs+3V9lChoBkdAR2UjC53C9GgHS8VoCEdAm9d0v9LpR3V9lChoBkdAcNGEB8x9HGgHS+1oCEdAm9o3VCojwHV9lChoBkdAZIlKraM72mgHTegDaAhHQJvjV0HQhOh1fZQoaAZHQHB4jbBXS0BoB00EAWgIR0Cb5Mf6GgzydX2UKGgGR0BwyFUrCm/GaAdNDgFoCEdAm+Y+NxVAA3V9lChoBkdAZCVCO3lS0mgHTegDaAhHQJvtBIUahpR1fZQoaAZHQHCYR9G7SRdoB00HAWgIR0Cb7myR0U48dX2UKGgGR0BxvbwZwXImaAdNKAFoCEdAm/E7xVhkRXV9lChoBkdAcaIMIu5BkmgHTUEBaAhHQJvy/MJQcgh1fZQoaAZHQHChUjPfKp1oB00MAWgIR0Cb9HrksBhhdX2UKGgGR0Bw5cVSGahIaAdNAwFoCEdAm/Xhwl0HQnV9lChoBkdAcjJnjyWiUWgHTUQBaAhHQJv42NHYpUh1fZQoaAZHQGZi3nQpnYhoB03oA2gIR0Cb/5TFVDKHdX2UKGgGR0Bu/FMXaakRaAdNEgFoCEdAnAEbfpD/l3V9lChoBkdAbpdb4agmJGgHS/1oCEdAnAJ6zZ6D5HV9lChoBkdAcmTjrzGxU2gHTQ8BaAhHQJwD+Wu5jH51fZQoaAZHQHGQyEpRXOpoB00zAWgIR0CcBs3A2ycDdX2UKGgGR0Bx7kjdHlOoaAdNLQFoCEdAnAh9yksSTXV9lChoBkdAbvwoYvWYnmgHTRsBaAhHQJwKBHLA57x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ6SEA30RVaO6BrDJe5SqVQYwDaW5jlIoQUdQEw7aej9Nk9OZoZUktUHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR3+3GbEKuKSQWcryTgNcSmQCMA2luY5SKEY9GVzsKbosMoWZ+hUaCQMMAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUSn/q/Qt1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |