Add multilingual to the language tag
Browse filesHi! A PR to add multilingual to the language tag to improve the referencing.
README.md
CHANGED
@@ -12,757 +12,352 @@ language:
|
|
12 |
- nl
|
13 |
- pdc
|
14 |
- yi
|
|
|
|
|
15 |
tags:
|
16 |
- translation
|
17 |
- opus-mt-tc
|
18 |
-
license: cc-by-4.0
|
19 |
model-index:
|
20 |
- name: opus-mt-tc-base-gmw-gmw
|
21 |
results:
|
22 |
- task:
|
23 |
-
name: Translation afr-deu
|
24 |
type: translation
|
25 |
-
|
26 |
dataset:
|
27 |
name: flores101-devtest
|
28 |
type: flores_101
|
29 |
args: afr deu devtest
|
30 |
metrics:
|
31 |
-
-
|
32 |
-
type: bleu
|
33 |
value: 21.6
|
34 |
-
|
35 |
-
|
36 |
-
type: translation
|
37 |
-
args: afr-eng
|
38 |
-
dataset:
|
39 |
-
name: flores101-devtest
|
40 |
-
type: flores_101
|
41 |
-
args: afr eng devtest
|
42 |
-
metrics:
|
43 |
-
- name: BLEU
|
44 |
-
type: bleu
|
45 |
value: 46.8
|
46 |
-
|
47 |
-
|
48 |
-
type: translation
|
49 |
-
args: deu-afr
|
50 |
-
dataset:
|
51 |
-
name: flores101-devtest
|
52 |
-
type: flores_101
|
53 |
-
args: deu afr devtest
|
54 |
-
metrics:
|
55 |
-
- name: BLEU
|
56 |
-
type: bleu
|
57 |
value: 21.4
|
58 |
-
|
59 |
-
|
60 |
-
type: translation
|
61 |
-
args: deu-eng
|
62 |
-
dataset:
|
63 |
-
name: flores101-devtest
|
64 |
-
type: flores_101
|
65 |
-
args: deu eng devtest
|
66 |
-
metrics:
|
67 |
-
- name: BLEU
|
68 |
-
type: bleu
|
69 |
value: 33.8
|
70 |
-
|
71 |
-
|
72 |
-
type: translation
|
73 |
-
args: eng-afr
|
74 |
-
dataset:
|
75 |
-
name: flores101-devtest
|
76 |
-
type: flores_101
|
77 |
-
args: eng afr devtest
|
78 |
-
metrics:
|
79 |
-
- name: BLEU
|
80 |
-
type: bleu
|
81 |
value: 33.8
|
82 |
-
|
83 |
-
|
84 |
-
type: translation
|
85 |
-
args: eng-deu
|
86 |
-
dataset:
|
87 |
-
name: flores101-devtest
|
88 |
-
type: flores_101
|
89 |
-
args: eng deu devtest
|
90 |
-
metrics:
|
91 |
-
- name: BLEU
|
92 |
-
type: bleu
|
93 |
value: 29.1
|
94 |
-
|
95 |
-
|
96 |
-
type: translation
|
97 |
-
args: eng-nld
|
98 |
-
dataset:
|
99 |
-
name: flores101-devtest
|
100 |
-
type: flores_101
|
101 |
-
args: eng nld devtest
|
102 |
-
metrics:
|
103 |
-
- name: BLEU
|
104 |
-
type: bleu
|
105 |
value: 21.0
|
106 |
-
|
107 |
-
|
108 |
-
type: translation
|
109 |
-
args: nld-eng
|
110 |
-
dataset:
|
111 |
-
name: flores101-devtest
|
112 |
-
type: flores_101
|
113 |
-
args: nld eng devtest
|
114 |
-
metrics:
|
115 |
-
- name: BLEU
|
116 |
-
type: bleu
|
117 |
value: 25.6
|
|
|
118 |
- task:
|
119 |
-
name: Translation deu-eng
|
120 |
type: translation
|
121 |
-
|
122 |
dataset:
|
123 |
name: multi30k_test_2016_flickr
|
124 |
type: multi30k-2016_flickr
|
125 |
args: deu-eng
|
126 |
metrics:
|
127 |
-
-
|
128 |
-
type: bleu
|
129 |
value: 32.2
|
130 |
-
|
131 |
-
|
132 |
-
type: translation
|
133 |
-
args: eng-deu
|
134 |
-
dataset:
|
135 |
-
name: multi30k_test_2016_flickr
|
136 |
-
type: multi30k-2016_flickr
|
137 |
-
args: eng-deu
|
138 |
-
metrics:
|
139 |
-
- name: BLEU
|
140 |
-
type: bleu
|
141 |
value: 28.8
|
|
|
142 |
- task:
|
143 |
-
name: Translation deu-eng
|
144 |
type: translation
|
145 |
-
|
146 |
dataset:
|
147 |
name: multi30k_test_2017_flickr
|
148 |
type: multi30k-2017_flickr
|
149 |
args: deu-eng
|
150 |
metrics:
|
151 |
-
-
|
152 |
-
type: bleu
|
153 |
value: 32.7
|
154 |
-
|
155 |
-
|
156 |
-
type: translation
|
157 |
-
args: eng-deu
|
158 |
-
dataset:
|
159 |
-
name: multi30k_test_2017_flickr
|
160 |
-
type: multi30k-2017_flickr
|
161 |
-
args: eng-deu
|
162 |
-
metrics:
|
163 |
-
- name: BLEU
|
164 |
-
type: bleu
|
165 |
value: 27.6
|
|
|
166 |
- task:
|
167 |
-
name: Translation deu-eng
|
168 |
type: translation
|
169 |
-
|
170 |
dataset:
|
171 |
name: multi30k_test_2017_mscoco
|
172 |
type: multi30k-2017_mscoco
|
173 |
args: deu-eng
|
174 |
metrics:
|
175 |
-
-
|
176 |
-
type: bleu
|
177 |
value: 25.5
|
178 |
-
|
179 |
-
|
180 |
-
type: translation
|
181 |
-
args: eng-deu
|
182 |
-
dataset:
|
183 |
-
name: multi30k_test_2017_mscoco
|
184 |
-
type: multi30k-2017_mscoco
|
185 |
-
args: eng-deu
|
186 |
-
metrics:
|
187 |
-
- name: BLEU
|
188 |
-
type: bleu
|
189 |
value: 22.0
|
|
|
190 |
- task:
|
191 |
-
name: Translation deu-eng
|
192 |
type: translation
|
193 |
-
|
194 |
dataset:
|
195 |
name: multi30k_test_2018_flickr
|
196 |
type: multi30k-2018_flickr
|
197 |
args: deu-eng
|
198 |
metrics:
|
199 |
-
-
|
200 |
-
type: bleu
|
201 |
value: 30.0
|
202 |
-
|
203 |
-
|
204 |
-
type: translation
|
205 |
-
args: eng-deu
|
206 |
-
dataset:
|
207 |
-
name: multi30k_test_2018_flickr
|
208 |
-
type: multi30k-2018_flickr
|
209 |
-
args: eng-deu
|
210 |
-
metrics:
|
211 |
-
- name: BLEU
|
212 |
-
type: bleu
|
213 |
value: 25.3
|
|
|
214 |
- task:
|
215 |
-
name: Translation deu-eng
|
216 |
type: translation
|
217 |
-
|
218 |
dataset:
|
219 |
name: news-test2008
|
220 |
type: news-test2008
|
221 |
args: deu-eng
|
222 |
metrics:
|
223 |
-
-
|
224 |
-
type: bleu
|
225 |
value: 23.8
|
|
|
226 |
- task:
|
227 |
-
name: Translation afr-deu
|
228 |
type: translation
|
229 |
-
|
230 |
dataset:
|
231 |
name: tatoeba-test-v2021-08-07
|
232 |
type: tatoeba_mt
|
233 |
args: afr-deu
|
234 |
metrics:
|
235 |
-
-
|
236 |
-
type: bleu
|
237 |
value: 48.1
|
238 |
-
|
239 |
-
|
240 |
-
type: translation
|
241 |
-
args: afr-eng
|
242 |
-
dataset:
|
243 |
-
name: tatoeba-test-v2021-08-07
|
244 |
-
type: tatoeba_mt
|
245 |
-
args: afr-eng
|
246 |
-
metrics:
|
247 |
-
- name: BLEU
|
248 |
-
type: bleu
|
249 |
value: 58.8
|
250 |
-
|
251 |
-
|
252 |
-
type: translation
|
253 |
-
args: afr-nld
|
254 |
-
dataset:
|
255 |
-
name: tatoeba-test-v2021-08-07
|
256 |
-
type: tatoeba_mt
|
257 |
-
args: afr-nld
|
258 |
-
metrics:
|
259 |
-
- name: BLEU
|
260 |
-
type: bleu
|
261 |
value: 54.5
|
262 |
-
|
263 |
-
|
264 |
-
type: translation
|
265 |
-
args: deu-afr
|
266 |
-
dataset:
|
267 |
-
name: tatoeba-test-v2021-08-07
|
268 |
-
type: tatoeba_mt
|
269 |
-
args: deu-afr
|
270 |
-
metrics:
|
271 |
-
- name: BLEU
|
272 |
-
type: bleu
|
273 |
value: 52.4
|
274 |
-
|
275 |
-
|
276 |
-
type: translation
|
277 |
-
args: deu-eng
|
278 |
-
dataset:
|
279 |
-
name: tatoeba-test-v2021-08-07
|
280 |
-
type: tatoeba_mt
|
281 |
-
args: deu-eng
|
282 |
-
metrics:
|
283 |
-
- name: BLEU
|
284 |
-
type: bleu
|
285 |
value: 42.1
|
286 |
-
|
287 |
-
|
288 |
-
type: translation
|
289 |
-
args: deu-nld
|
290 |
-
dataset:
|
291 |
-
name: tatoeba-test-v2021-08-07
|
292 |
-
type: tatoeba_mt
|
293 |
-
args: deu-nld
|
294 |
-
metrics:
|
295 |
-
- name: BLEU
|
296 |
-
type: bleu
|
297 |
value: 48.7
|
298 |
-
|
299 |
-
|
300 |
-
type: translation
|
301 |
-
args: eng-afr
|
302 |
-
dataset:
|
303 |
-
name: tatoeba-test-v2021-08-07
|
304 |
-
type: tatoeba_mt
|
305 |
-
args: eng-afr
|
306 |
-
metrics:
|
307 |
-
- name: BLEU
|
308 |
-
type: bleu
|
309 |
value: 56.5
|
310 |
-
|
311 |
-
|
312 |
-
type: translation
|
313 |
-
args: eng-deu
|
314 |
-
dataset:
|
315 |
-
name: tatoeba-test-v2021-08-07
|
316 |
-
type: tatoeba_mt
|
317 |
-
args: eng-deu
|
318 |
-
metrics:
|
319 |
-
- name: BLEU
|
320 |
-
type: bleu
|
321 |
value: 35.9
|
322 |
-
|
323 |
-
|
324 |
-
type: translation
|
325 |
-
args: eng-nld
|
326 |
-
dataset:
|
327 |
-
name: tatoeba-test-v2021-08-07
|
328 |
-
type: tatoeba_mt
|
329 |
-
args: eng-nld
|
330 |
-
metrics:
|
331 |
-
- name: BLEU
|
332 |
-
type: bleu
|
333 |
value: 48.3
|
334 |
-
|
335 |
-
|
336 |
-
type: translation
|
337 |
-
args: fry-eng
|
338 |
-
dataset:
|
339 |
-
name: tatoeba-test-v2021-08-07
|
340 |
-
type: tatoeba_mt
|
341 |
-
args: fry-eng
|
342 |
-
metrics:
|
343 |
-
- name: BLEU
|
344 |
-
type: bleu
|
345 |
value: 32.5
|
346 |
-
|
347 |
-
|
348 |
-
type: translation
|
349 |
-
args: fry-nld
|
350 |
-
dataset:
|
351 |
-
name: tatoeba-test-v2021-08-07
|
352 |
-
type: tatoeba_mt
|
353 |
-
args: fry-nld
|
354 |
-
metrics:
|
355 |
-
- name: BLEU
|
356 |
-
type: bleu
|
357 |
value: 43.1
|
358 |
-
|
359 |
-
|
360 |
-
type: translation
|
361 |
-
args: hrx-deu
|
362 |
-
dataset:
|
363 |
-
name: tatoeba-test-v2021-08-07
|
364 |
-
type: tatoeba_mt
|
365 |
-
args: hrx-deu
|
366 |
-
metrics:
|
367 |
-
- name: BLEU
|
368 |
-
type: bleu
|
369 |
value: 24.7
|
370 |
-
|
371 |
-
|
372 |
-
type: translation
|
373 |
-
args: hrx-eng
|
374 |
-
dataset:
|
375 |
-
name: tatoeba-test-v2021-08-07
|
376 |
-
type: tatoeba_mt
|
377 |
-
args: hrx-eng
|
378 |
-
metrics:
|
379 |
-
- name: BLEU
|
380 |
-
type: bleu
|
381 |
value: 20.4
|
382 |
-
|
383 |
-
|
384 |
-
type: translation
|
385 |
-
args: ltz-deu
|
386 |
-
dataset:
|
387 |
-
name: tatoeba-test-v2021-08-07
|
388 |
-
type: tatoeba_mt
|
389 |
-
args: ltz-deu
|
390 |
-
metrics:
|
391 |
-
- name: BLEU
|
392 |
-
type: bleu
|
393 |
value: 37.2
|
394 |
-
|
395 |
-
|
396 |
-
type: translation
|
397 |
-
args: ltz-eng
|
398 |
-
dataset:
|
399 |
-
name: tatoeba-test-v2021-08-07
|
400 |
-
type: tatoeba_mt
|
401 |
-
args: ltz-eng
|
402 |
-
metrics:
|
403 |
-
- name: BLEU
|
404 |
-
type: bleu
|
405 |
value: 32.4
|
406 |
-
|
407 |
-
|
408 |
-
type: translation
|
409 |
-
args: ltz-nld
|
410 |
-
dataset:
|
411 |
-
name: tatoeba-test-v2021-08-07
|
412 |
-
type: tatoeba_mt
|
413 |
-
args: ltz-nld
|
414 |
-
metrics:
|
415 |
-
- name: BLEU
|
416 |
-
type: bleu
|
417 |
value: 39.3
|
418 |
-
|
419 |
-
|
420 |
-
type: translation
|
421 |
-
args: nds-deu
|
422 |
-
dataset:
|
423 |
-
name: tatoeba-test-v2021-08-07
|
424 |
-
type: tatoeba_mt
|
425 |
-
args: nds-deu
|
426 |
-
metrics:
|
427 |
-
- name: BLEU
|
428 |
-
type: bleu
|
429 |
value: 34.5
|
430 |
-
|
431 |
-
|
432 |
-
type: translation
|
433 |
-
args: nds-eng
|
434 |
-
dataset:
|
435 |
-
name: tatoeba-test-v2021-08-07
|
436 |
-
type: tatoeba_mt
|
437 |
-
args: nds-eng
|
438 |
-
metrics:
|
439 |
-
- name: BLEU
|
440 |
-
type: bleu
|
441 |
value: 29.9
|
442 |
-
|
443 |
-
|
444 |
-
type: translation
|
445 |
-
args: nds-nld
|
446 |
-
dataset:
|
447 |
-
name: tatoeba-test-v2021-08-07
|
448 |
-
type: tatoeba_mt
|
449 |
-
args: nds-nld
|
450 |
-
metrics:
|
451 |
-
- name: BLEU
|
452 |
-
type: bleu
|
453 |
value: 42.3
|
454 |
-
|
455 |
-
|
456 |
-
type: translation
|
457 |
-
args: nld-afr
|
458 |
-
dataset:
|
459 |
-
name: tatoeba-test-v2021-08-07
|
460 |
-
type: tatoeba_mt
|
461 |
-
args: nld-afr
|
462 |
-
metrics:
|
463 |
-
- name: BLEU
|
464 |
-
type: bleu
|
465 |
value: 58.8
|
466 |
-
|
467 |
-
|
468 |
-
type: translation
|
469 |
-
args: nld-deu
|
470 |
-
dataset:
|
471 |
-
name: tatoeba-test-v2021-08-07
|
472 |
-
type: tatoeba_mt
|
473 |
-
args: nld-deu
|
474 |
-
metrics:
|
475 |
-
- name: BLEU
|
476 |
-
type: bleu
|
477 |
value: 50.4
|
478 |
-
|
479 |
-
|
480 |
-
type: translation
|
481 |
-
args: nld-eng
|
482 |
-
dataset:
|
483 |
-
name: tatoeba-test-v2021-08-07
|
484 |
-
type: tatoeba_mt
|
485 |
-
args: nld-eng
|
486 |
-
metrics:
|
487 |
-
- name: BLEU
|
488 |
-
type: bleu
|
489 |
value: 53.1
|
490 |
-
|
491 |
-
|
492 |
-
type: translation
|
493 |
-
args: nld-fry
|
494 |
-
dataset:
|
495 |
-
name: tatoeba-test-v2021-08-07
|
496 |
-
type: tatoeba_mt
|
497 |
-
args: nld-fry
|
498 |
-
metrics:
|
499 |
-
- name: BLEU
|
500 |
-
type: bleu
|
501 |
value: 25.1
|
502 |
-
|
503 |
-
|
504 |
-
type: translation
|
505 |
-
args: nld-nds
|
506 |
-
dataset:
|
507 |
-
name: tatoeba-test-v2021-08-07
|
508 |
-
type: tatoeba_mt
|
509 |
-
args: nld-nds
|
510 |
-
metrics:
|
511 |
-
- name: BLEU
|
512 |
-
type: bleu
|
513 |
value: 21.4
|
|
|
514 |
- task:
|
515 |
-
name: Translation deu-eng
|
516 |
type: translation
|
517 |
-
|
518 |
dataset:
|
519 |
name: newstest2009
|
520 |
type: wmt-2009-news
|
521 |
args: deu-eng
|
522 |
metrics:
|
523 |
-
-
|
524 |
-
type: bleu
|
525 |
value: 23.4
|
|
|
526 |
- task:
|
527 |
-
name: Translation deu-eng
|
528 |
type: translation
|
529 |
-
|
530 |
dataset:
|
531 |
name: newstest2010
|
532 |
type: wmt-2010-news
|
533 |
args: deu-eng
|
534 |
metrics:
|
535 |
-
-
|
536 |
-
type: bleu
|
537 |
value: 25.8
|
538 |
-
|
539 |
-
|
540 |
-
type: translation
|
541 |
-
args: eng-deu
|
542 |
-
dataset:
|
543 |
-
name: newstest2010
|
544 |
-
type: wmt-2010-news
|
545 |
-
args: eng-deu
|
546 |
-
metrics:
|
547 |
-
- name: BLEU
|
548 |
-
type: bleu
|
549 |
value: 20.7
|
|
|
550 |
- task:
|
551 |
-
name: Translation deu-eng
|
552 |
type: translation
|
553 |
-
|
554 |
dataset:
|
555 |
name: newstest2011
|
556 |
type: wmt-2011-news
|
557 |
args: deu-eng
|
558 |
metrics:
|
559 |
-
-
|
560 |
-
type: bleu
|
561 |
value: 23.7
|
|
|
562 |
- task:
|
563 |
-
name: Translation deu-eng
|
564 |
type: translation
|
565 |
-
|
566 |
dataset:
|
567 |
name: newstest2012
|
568 |
type: wmt-2012-news
|
569 |
args: deu-eng
|
570 |
metrics:
|
571 |
-
-
|
572 |
-
type: bleu
|
573 |
value: 24.8
|
|
|
574 |
- task:
|
575 |
-
name: Translation deu-eng
|
576 |
type: translation
|
577 |
-
|
578 |
dataset:
|
579 |
name: newstest2013
|
580 |
type: wmt-2013-news
|
581 |
args: deu-eng
|
582 |
metrics:
|
583 |
-
-
|
584 |
-
type: bleu
|
585 |
value: 27.7
|
586 |
-
|
587 |
-
|
588 |
-
type: translation
|
589 |
-
args: eng-deu
|
590 |
-
dataset:
|
591 |
-
name: newstest2013
|
592 |
-
type: wmt-2013-news
|
593 |
-
args: eng-deu
|
594 |
-
metrics:
|
595 |
-
- name: BLEU
|
596 |
-
type: bleu
|
597 |
value: 22.5
|
|
|
598 |
- task:
|
599 |
-
name: Translation deu-eng
|
600 |
type: translation
|
601 |
-
|
602 |
dataset:
|
603 |
name: newstest2014-deen
|
604 |
type: wmt-2014-news
|
605 |
args: deu-eng
|
606 |
metrics:
|
607 |
-
-
|
608 |
-
type: bleu
|
609 |
value: 27.3
|
610 |
-
|
611 |
-
|
612 |
-
type: translation
|
613 |
-
args: eng-deu
|
614 |
-
dataset:
|
615 |
-
name: newstest2014-deen
|
616 |
-
type: wmt-2014-news
|
617 |
-
args: eng-deu
|
618 |
-
metrics:
|
619 |
-
- name: BLEU
|
620 |
-
type: bleu
|
621 |
value: 22.0
|
|
|
622 |
- task:
|
623 |
-
name: Translation deu-eng
|
624 |
type: translation
|
625 |
-
|
626 |
dataset:
|
627 |
name: newstest2015-deen
|
628 |
type: wmt-2015-news
|
629 |
args: deu-eng
|
630 |
metrics:
|
631 |
-
-
|
632 |
-
type: bleu
|
633 |
value: 28.6
|
634 |
-
|
635 |
-
|
636 |
-
type: translation
|
637 |
-
args: eng-deu
|
638 |
-
dataset:
|
639 |
-
name: newstest2015-ende
|
640 |
-
type: wmt-2015-news
|
641 |
-
args: eng-deu
|
642 |
-
metrics:
|
643 |
-
- name: BLEU
|
644 |
-
type: bleu
|
645 |
value: 25.7
|
|
|
646 |
- task:
|
647 |
-
name: Translation deu-eng
|
648 |
type: translation
|
649 |
-
|
650 |
dataset:
|
651 |
name: newstest2016-deen
|
652 |
type: wmt-2016-news
|
653 |
args: deu-eng
|
654 |
metrics:
|
655 |
-
-
|
656 |
-
type: bleu
|
657 |
value: 33.3
|
658 |
-
|
659 |
-
|
660 |
-
type: translation
|
661 |
-
args: eng-deu
|
662 |
-
dataset:
|
663 |
-
name: newstest2016-ende
|
664 |
-
type: wmt-2016-news
|
665 |
-
args: eng-deu
|
666 |
-
metrics:
|
667 |
-
- name: BLEU
|
668 |
-
type: bleu
|
669 |
value: 30.0
|
|
|
670 |
- task:
|
671 |
-
name: Translation deu-eng
|
672 |
type: translation
|
673 |
-
|
674 |
dataset:
|
675 |
name: newstest2017-deen
|
676 |
type: wmt-2017-news
|
677 |
args: deu-eng
|
678 |
metrics:
|
679 |
-
-
|
680 |
-
type: bleu
|
681 |
value: 29.5
|
682 |
-
|
683 |
-
|
684 |
-
type: translation
|
685 |
-
args: eng-deu
|
686 |
-
dataset:
|
687 |
-
name: newstest2017-ende
|
688 |
-
type: wmt-2017-news
|
689 |
-
args: eng-deu
|
690 |
-
metrics:
|
691 |
-
- name: BLEU
|
692 |
-
type: bleu
|
693 |
value: 24.1
|
|
|
694 |
- task:
|
695 |
-
name: Translation deu-eng
|
696 |
type: translation
|
697 |
-
|
698 |
dataset:
|
699 |
name: newstest2018-deen
|
700 |
type: wmt-2018-news
|
701 |
args: deu-eng
|
702 |
metrics:
|
703 |
-
-
|
704 |
-
type: bleu
|
705 |
value: 36.1
|
706 |
-
|
707 |
-
|
708 |
-
type: translation
|
709 |
-
args: eng-deu
|
710 |
-
dataset:
|
711 |
-
name: newstest2018-ende
|
712 |
-
type: wmt-2018-news
|
713 |
-
args: eng-deu
|
714 |
-
metrics:
|
715 |
-
- name: BLEU
|
716 |
-
type: bleu
|
717 |
value: 35.4
|
|
|
718 |
- task:
|
719 |
-
name: Translation deu-eng
|
720 |
type: translation
|
721 |
-
|
722 |
dataset:
|
723 |
name: newstest2019-deen
|
724 |
type: wmt-2019-news
|
725 |
args: deu-eng
|
726 |
metrics:
|
727 |
-
-
|
728 |
-
type: bleu
|
729 |
value: 32.3
|
730 |
-
|
731 |
-
|
732 |
-
type: translation
|
733 |
-
args: eng-deu
|
734 |
-
dataset:
|
735 |
-
name: newstest2019-ende
|
736 |
-
type: wmt-2019-news
|
737 |
-
args: eng-deu
|
738 |
-
metrics:
|
739 |
-
- name: BLEU
|
740 |
-
type: bleu
|
741 |
value: 31.2
|
|
|
742 |
- task:
|
743 |
-
name: Translation deu-eng
|
744 |
type: translation
|
745 |
-
|
746 |
dataset:
|
747 |
name: newstest2020-deen
|
748 |
type: wmt-2020-news
|
749 |
args: deu-eng
|
750 |
metrics:
|
751 |
-
-
|
752 |
-
type: bleu
|
753 |
value: 32.0
|
754 |
-
|
755 |
-
|
756 |
-
type: translation
|
757 |
-
args: eng-deu
|
758 |
-
dataset:
|
759 |
-
name: newstest2020-ende
|
760 |
-
type: wmt-2020-news
|
761 |
-
args: eng-deu
|
762 |
-
metrics:
|
763 |
-
- name: BLEU
|
764 |
-
type: bleu
|
765 |
value: 23.9
|
|
|
766 |
---
|
767 |
# opus-mt-tc-base-gmw-gmw
|
768 |
|
@@ -770,7 +365,7 @@ Neural machine translation model for translating from West Germanic languages (g
|
|
770 |
|
771 |
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
772 |
|
773 |
-
* Publications: [OPUS-MT
|
774 |
|
775 |
```
|
776 |
@inproceedings{tiedemann-thottingal-2020-opus,
|
@@ -941,7 +536,7 @@ print(pipe(>>nld<< You need help.))
|
|
941 |
|
942 |
## Acknowledgements
|
943 |
|
944 |
-
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union
|
945 |
|
946 |
## Model conversion info
|
947 |
|
|
|
12 |
- nl
|
13 |
- pdc
|
14 |
- yi
|
15 |
+
- multilingual
|
16 |
+
license: cc-by-4.0
|
17 |
tags:
|
18 |
- translation
|
19 |
- opus-mt-tc
|
|
|
20 |
model-index:
|
21 |
- name: opus-mt-tc-base-gmw-gmw
|
22 |
results:
|
23 |
- task:
|
|
|
24 |
type: translation
|
25 |
+
name: Translation afr-deu
|
26 |
dataset:
|
27 |
name: flores101-devtest
|
28 |
type: flores_101
|
29 |
args: afr deu devtest
|
30 |
metrics:
|
31 |
+
- type: bleu
|
|
|
32 |
value: 21.6
|
33 |
+
name: BLEU
|
34 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
value: 46.8
|
36 |
+
name: BLEU
|
37 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
value: 21.4
|
39 |
+
name: BLEU
|
40 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
value: 33.8
|
42 |
+
name: BLEU
|
43 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
value: 33.8
|
45 |
+
name: BLEU
|
46 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
value: 29.1
|
48 |
+
name: BLEU
|
49 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
value: 21.0
|
51 |
+
name: BLEU
|
52 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
value: 25.6
|
54 |
+
name: BLEU
|
55 |
- task:
|
|
|
56 |
type: translation
|
57 |
+
name: Translation deu-eng
|
58 |
dataset:
|
59 |
name: multi30k_test_2016_flickr
|
60 |
type: multi30k-2016_flickr
|
61 |
args: deu-eng
|
62 |
metrics:
|
63 |
+
- type: bleu
|
|
|
64 |
value: 32.2
|
65 |
+
name: BLEU
|
66 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
value: 28.8
|
68 |
+
name: BLEU
|
69 |
- task:
|
|
|
70 |
type: translation
|
71 |
+
name: Translation deu-eng
|
72 |
dataset:
|
73 |
name: multi30k_test_2017_flickr
|
74 |
type: multi30k-2017_flickr
|
75 |
args: deu-eng
|
76 |
metrics:
|
77 |
+
- type: bleu
|
|
|
78 |
value: 32.7
|
79 |
+
name: BLEU
|
80 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
value: 27.6
|
82 |
+
name: BLEU
|
83 |
- task:
|
|
|
84 |
type: translation
|
85 |
+
name: Translation deu-eng
|
86 |
dataset:
|
87 |
name: multi30k_test_2017_mscoco
|
88 |
type: multi30k-2017_mscoco
|
89 |
args: deu-eng
|
90 |
metrics:
|
91 |
+
- type: bleu
|
|
|
92 |
value: 25.5
|
93 |
+
name: BLEU
|
94 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
value: 22.0
|
96 |
+
name: BLEU
|
97 |
- task:
|
|
|
98 |
type: translation
|
99 |
+
name: Translation deu-eng
|
100 |
dataset:
|
101 |
name: multi30k_test_2018_flickr
|
102 |
type: multi30k-2018_flickr
|
103 |
args: deu-eng
|
104 |
metrics:
|
105 |
+
- type: bleu
|
|
|
106 |
value: 30.0
|
107 |
+
name: BLEU
|
108 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
value: 25.3
|
110 |
+
name: BLEU
|
111 |
- task:
|
|
|
112 |
type: translation
|
113 |
+
name: Translation deu-eng
|
114 |
dataset:
|
115 |
name: news-test2008
|
116 |
type: news-test2008
|
117 |
args: deu-eng
|
118 |
metrics:
|
119 |
+
- type: bleu
|
|
|
120 |
value: 23.8
|
121 |
+
name: BLEU
|
122 |
- task:
|
|
|
123 |
type: translation
|
124 |
+
name: Translation afr-deu
|
125 |
dataset:
|
126 |
name: tatoeba-test-v2021-08-07
|
127 |
type: tatoeba_mt
|
128 |
args: afr-deu
|
129 |
metrics:
|
130 |
+
- type: bleu
|
|
|
131 |
value: 48.1
|
132 |
+
name: BLEU
|
133 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
value: 58.8
|
135 |
+
name: BLEU
|
136 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
value: 54.5
|
138 |
+
name: BLEU
|
139 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
value: 52.4
|
141 |
+
name: BLEU
|
142 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
value: 42.1
|
144 |
+
name: BLEU
|
145 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
value: 48.7
|
147 |
+
name: BLEU
|
148 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
value: 56.5
|
150 |
+
name: BLEU
|
151 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
value: 35.9
|
153 |
+
name: BLEU
|
154 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
value: 48.3
|
156 |
+
name: BLEU
|
157 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
value: 32.5
|
159 |
+
name: BLEU
|
160 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
value: 43.1
|
162 |
+
name: BLEU
|
163 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
value: 24.7
|
165 |
+
name: BLEU
|
166 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
value: 20.4
|
168 |
+
name: BLEU
|
169 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
value: 37.2
|
171 |
+
name: BLEU
|
172 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
value: 32.4
|
174 |
+
name: BLEU
|
175 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
value: 39.3
|
177 |
+
name: BLEU
|
178 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
value: 34.5
|
180 |
+
name: BLEU
|
181 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
value: 29.9
|
183 |
+
name: BLEU
|
184 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
value: 42.3
|
186 |
+
name: BLEU
|
187 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
value: 58.8
|
189 |
+
name: BLEU
|
190 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
value: 50.4
|
192 |
+
name: BLEU
|
193 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
value: 53.1
|
195 |
+
name: BLEU
|
196 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
value: 25.1
|
198 |
+
name: BLEU
|
199 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
value: 21.4
|
201 |
+
name: BLEU
|
202 |
- task:
|
|
|
203 |
type: translation
|
204 |
+
name: Translation deu-eng
|
205 |
dataset:
|
206 |
name: newstest2009
|
207 |
type: wmt-2009-news
|
208 |
args: deu-eng
|
209 |
metrics:
|
210 |
+
- type: bleu
|
|
|
211 |
value: 23.4
|
212 |
+
name: BLEU
|
213 |
- task:
|
|
|
214 |
type: translation
|
215 |
+
name: Translation deu-eng
|
216 |
dataset:
|
217 |
name: newstest2010
|
218 |
type: wmt-2010-news
|
219 |
args: deu-eng
|
220 |
metrics:
|
221 |
+
- type: bleu
|
|
|
222 |
value: 25.8
|
223 |
+
name: BLEU
|
224 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
value: 20.7
|
226 |
+
name: BLEU
|
227 |
- task:
|
|
|
228 |
type: translation
|
229 |
+
name: Translation deu-eng
|
230 |
dataset:
|
231 |
name: newstest2011
|
232 |
type: wmt-2011-news
|
233 |
args: deu-eng
|
234 |
metrics:
|
235 |
+
- type: bleu
|
|
|
236 |
value: 23.7
|
237 |
+
name: BLEU
|
238 |
- task:
|
|
|
239 |
type: translation
|
240 |
+
name: Translation deu-eng
|
241 |
dataset:
|
242 |
name: newstest2012
|
243 |
type: wmt-2012-news
|
244 |
args: deu-eng
|
245 |
metrics:
|
246 |
+
- type: bleu
|
|
|
247 |
value: 24.8
|
248 |
+
name: BLEU
|
249 |
- task:
|
|
|
250 |
type: translation
|
251 |
+
name: Translation deu-eng
|
252 |
dataset:
|
253 |
name: newstest2013
|
254 |
type: wmt-2013-news
|
255 |
args: deu-eng
|
256 |
metrics:
|
257 |
+
- type: bleu
|
|
|
258 |
value: 27.7
|
259 |
+
name: BLEU
|
260 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
value: 22.5
|
262 |
+
name: BLEU
|
263 |
- task:
|
|
|
264 |
type: translation
|
265 |
+
name: Translation deu-eng
|
266 |
dataset:
|
267 |
name: newstest2014-deen
|
268 |
type: wmt-2014-news
|
269 |
args: deu-eng
|
270 |
metrics:
|
271 |
+
- type: bleu
|
|
|
272 |
value: 27.3
|
273 |
+
name: BLEU
|
274 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
value: 22.0
|
276 |
+
name: BLEU
|
277 |
- task:
|
|
|
278 |
type: translation
|
279 |
+
name: Translation deu-eng
|
280 |
dataset:
|
281 |
name: newstest2015-deen
|
282 |
type: wmt-2015-news
|
283 |
args: deu-eng
|
284 |
metrics:
|
285 |
+
- type: bleu
|
|
|
286 |
value: 28.6
|
287 |
+
name: BLEU
|
288 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
value: 25.7
|
290 |
+
name: BLEU
|
291 |
- task:
|
|
|
292 |
type: translation
|
293 |
+
name: Translation deu-eng
|
294 |
dataset:
|
295 |
name: newstest2016-deen
|
296 |
type: wmt-2016-news
|
297 |
args: deu-eng
|
298 |
metrics:
|
299 |
+
- type: bleu
|
|
|
300 |
value: 33.3
|
301 |
+
name: BLEU
|
302 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
value: 30.0
|
304 |
+
name: BLEU
|
305 |
- task:
|
|
|
306 |
type: translation
|
307 |
+
name: Translation deu-eng
|
308 |
dataset:
|
309 |
name: newstest2017-deen
|
310 |
type: wmt-2017-news
|
311 |
args: deu-eng
|
312 |
metrics:
|
313 |
+
- type: bleu
|
|
|
314 |
value: 29.5
|
315 |
+
name: BLEU
|
316 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
value: 24.1
|
318 |
+
name: BLEU
|
319 |
- task:
|
|
|
320 |
type: translation
|
321 |
+
name: Translation deu-eng
|
322 |
dataset:
|
323 |
name: newstest2018-deen
|
324 |
type: wmt-2018-news
|
325 |
args: deu-eng
|
326 |
metrics:
|
327 |
+
- type: bleu
|
|
|
328 |
value: 36.1
|
329 |
+
name: BLEU
|
330 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
value: 35.4
|
332 |
+
name: BLEU
|
333 |
- task:
|
|
|
334 |
type: translation
|
335 |
+
name: Translation deu-eng
|
336 |
dataset:
|
337 |
name: newstest2019-deen
|
338 |
type: wmt-2019-news
|
339 |
args: deu-eng
|
340 |
metrics:
|
341 |
+
- type: bleu
|
|
|
342 |
value: 32.3
|
343 |
+
name: BLEU
|
344 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
value: 31.2
|
346 |
+
name: BLEU
|
347 |
- task:
|
|
|
348 |
type: translation
|
349 |
+
name: Translation deu-eng
|
350 |
dataset:
|
351 |
name: newstest2020-deen
|
352 |
type: wmt-2020-news
|
353 |
args: deu-eng
|
354 |
metrics:
|
355 |
+
- type: bleu
|
|
|
356 |
value: 32.0
|
357 |
+
name: BLEU
|
358 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
value: 23.9
|
360 |
+
name: BLEU
|
361 |
---
|
362 |
# opus-mt-tc-base-gmw-gmw
|
363 |
|
|
|
365 |
|
366 |
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
367 |
|
368 |
+
* Publications: [OPUS-MT � Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge � Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
|
369 |
|
370 |
```
|
371 |
@inproceedings{tiedemann-thottingal-2020-opus,
|
|
|
536 |
|
537 |
## Acknowledgements
|
538 |
|
539 |
+
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union�s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union�s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
|
540 |
|
541 |
## Model conversion info
|
542 |
|