File size: 12,822 Bytes
aba0e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import torch
import os
from collections import OrderedDict
from torch.autograd import Variable
import itertools
import util.util as util
from util.util import weights_init, get_model_list, vgg_preprocess, load_vgg16, get_scheduler
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
from .unit_network import *
import sys

def get_config(config):
    import yaml
    with open(config, 'r') as stream:
        return yaml.load(stream)

class UNITModel(BaseModel):
    def name(self):
        return 'UNITModel'

    def initialize(self, opt):
        BaseModel.initialize(self, opt)
        
        self.config = get_config(opt.config)
        nb = opt.batchSize
        size = opt.fineSize
        self.input_A = self.Tensor(nb, opt.input_nc, size, size)
        self.input_B = self.Tensor(nb, opt.output_nc, size, size)

        # load/define networks
        # The naming conversion is different from those used in the paper
        # Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)

        self.gen_a = VAEGen(self.config['input_dim_a'], self.config['gen'])
        self.gen_b = VAEGen(self.config['input_dim_a'], self.config['gen'])

        if self.isTrain:
            self.dis_a = MsImageDis(self.config['input_dim_a'], self.config['dis'])  # discriminator for domain a
            self.dis_b = MsImageDis(self.config['input_dim_b'], self.config['dis'])  # discriminator for domain b
        if not self.isTrain or opt.continue_train:
            which_epoch = opt.which_epoch
            self.load_network(self.gen_a, 'G_A', which_epoch)
            self.load_network(self.gen_b, 'G_B', which_epoch)
            if self.isTrain:
                self.load_network(self.dis_a, 'D_A', which_epoch)
                self.load_network(self.dis_b, 'D_B', which_epoch)

        if self.isTrain:
            self.old_lr = self.config['lr']
            self.fake_A_pool = ImagePool(opt.pool_size)
            self.fake_B_pool = ImagePool(opt.pool_size)
            # define loss functions
            # Setup the optimizers
            beta1 = self.config['beta1']
            beta2 = self.config['beta2']
            dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters())
            gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters())
            self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad],
                                            lr=self.config['lr'], betas=(beta1, beta2), weight_decay=self.config['weight_decay'])
            self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad],
                                            lr=self.config['lr'], betas=(beta1, beta2), weight_decay=self.config['weight_decay'])
            self.dis_scheduler = get_scheduler(self.dis_opt, self.config)
            self.gen_scheduler = get_scheduler(self.gen_opt, self.config)

            # Network weight initialization
            # self.apply(weights_init(self.config['init']))
            self.dis_a.apply(weights_init('gaussian'))
            self.dis_b.apply(weights_init('gaussian'))

            # Load VGG model if needed
            if 'vgg_w' in self.config.keys() and self.config['vgg_w'] > 0:
                self.vgg = load_vgg16(self.config['vgg_model_path'] + '/models')
                self.vgg.eval()
                for param in self.vgg.parameters():
                    param.requires_grad = False
        self.gen_a.cuda()
        self.gen_b.cuda()
        self.dis_a.cuda()
        self.dis_b.cuda()

        print('---------- Networks initialized -------------')
        networks.print_network(self.gen_a)
        networks.print_network(self.gen_b)
        if self.isTrain:
            networks.print_network(self.dis_a)
            networks.print_network(self.dis_b)
        print('-----------------------------------------------')

    def set_input(self, input):
        AtoB = self.opt.which_direction == 'AtoB'
        input_A = input['A' if AtoB else 'B']
        input_B = input['B' if AtoB else 'A']
        self.input_A.resize_(input_A.size()).copy_(input_A)
        self.input_B.resize_(input_B.size()).copy_(input_B)
        self.image_paths = input['A_paths' if AtoB else 'B_paths']
        self.real_A = Variable(self.input_A.cuda())
        self.real_B = Variable(self.input_B.cuda())

    # def forward(self):
        # self.real_A = Variable(self.input_A)
        # self.real_B = Variable(self.input_B)

    def test(self):
        self.real_A = Variable(self.input_A.cuda(), volatile=True)
        self.real_B = Variable(self.input_B.cuda(), volatile=True)
        h_a, n_a = self.gen_a.encode(self.real_A)
        h_b, n_b = self.gen_b.encode(self.real_B)
        x_a_recon = self.gen_a.decode(h_a + n_a) + x_a*1
        x_b_recon = self.gen_b.decode(h_b + n_b) + x_b*1
        x_ba = self.gen_a.decode(h_b + n_b) + x_b*1
        x_ab = self.gen_b.decode(h_a + n_a) + x_a*1
        h_b_recon, n_b_recon = self.gen_a.encode(x_ba)
        h_a_recon, n_a_recon = self.gen_b.encode(x_ab)
        x_aba = self.gen_a.decode(h_a_recon + n_a_recon) + x_ab*1 if self.config['recon_x_cyc_w'] > 0 else None
        x_bab = self.gen_b.decode(h_b_recon + n_b_recon) + x_ba*1 if self.config['recon_x_cyc_w'] > 0 else None
        self.x_a_recon, self.x_ab, self.x_aba = x_a_recon, x_ab, x_aba
        self.x_b_recon, self.x_ba, self.x_bab = x_b_recon, x_ba, x_bab

    # get image paths
    def get_image_paths(self):
        return self.image_paths


    def optimize_parameters(self):
        self.gen_update(self.real_A, self.real_B)
        self.dis_update(self.real_A, self.real_B)

    def recon_criterion(self, input, target):
        return torch.mean(torch.abs(input - target))

    def forward(self, x_a, x_b):
        self.eval()
        x_a.volatile = True
        x_b.volatile = True
        h_a, _ = self.gen_a.encode(x_a)
        h_b, _ = self.gen_b.encode(x_b)
        x_ba = self.gen_a.decode(h_b)
        x_ab = self.gen_b.decode(h_a)
        self.train()
        return x_ab, x_ba

    def __compute_kl(self, mu):
        # def _compute_kl(self, mu, sd):
        # mu_2 = torch.pow(mu, 2)
        # sd_2 = torch.pow(sd, 2)
        # encoding_loss = (mu_2 + sd_2 - torch.log(sd_2)).sum() / mu_2.size(0)
        # return encoding_loss
        mu_2 = torch.pow(mu, 2)
        encoding_loss = torch.mean(mu_2)
        return encoding_loss

    def gen_update(self, x_a, x_b):
        self.gen_opt.zero_grad()
        # encode
        h_a, n_a = self.gen_a.encode(x_a)
        h_b, n_b = self.gen_b.encode(x_b)
        # decode (within domain)
        x_a_recon = self.gen_a.decode(h_a + n_a) + 0*x_a
        x_b_recon = self.gen_b.decode(h_b + n_b) + 0*x_b
        # decode (cross domain)
        x_ba = self.gen_a.decode(h_b + n_b) + 0*x_b
        x_ab = self.gen_b.decode(h_a + n_a) + 0*x_a
        # encode again
        h_b_recon, n_b_recon = self.gen_a.encode(x_ba)
        h_a_recon, n_a_recon = self.gen_b.encode(x_ab)
        # decode again (if needed)
        x_aba = self.gen_a.decode(h_a_recon + n_a_recon) +  0*x_ab if self.config['recon_x_cyc_w'] > 0 else None
        x_bab = self.gen_b.decode(h_b_recon + n_b_recon) + 0*x_ba if self.config['recon_x_cyc_w'] > 0 else None

        # reconstruction loss
        self.loss_gen_recon_x_a = self.recon_criterion(x_a_recon, x_a)
        self.loss_gen_recon_x_b = self.recon_criterion(x_b_recon, x_b)
        self.loss_gen_recon_kl_a = self.__compute_kl(h_a)
        self.loss_gen_recon_kl_b = self.__compute_kl(h_b)
        self.loss_gen_cyc_x_a = self.recon_criterion(x_aba, x_a)
        self.loss_gen_cyc_x_b = self.recon_criterion(x_bab, x_b)
        self.loss_gen_recon_kl_cyc_aba = self.__compute_kl(h_a_recon)
        self.loss_gen_recon_kl_cyc_bab = self.__compute_kl(h_b_recon)
        # GAN loss
        self.loss_gen_adv_a = self.dis_a.calc_gen_loss(x_ba)
        self.loss_gen_adv_b = self.dis_b.calc_gen_loss(x_ab)
        # domain-invariant perceptual loss
        self.loss_gen_vgg_a = self.compute_vgg_loss(self.vgg, x_ba, x_b) if self.config['vgg_w'] > 0 else 0
        self.loss_gen_vgg_b = self.compute_vgg_loss(self.vgg, x_ab, x_a) if self.config['vgg_w'] > 0 else 0
        # total loss
        self.loss_gen_total = self.config['gan_w'] * self.loss_gen_adv_a + \
                              self.config['gan_w'] * self.loss_gen_adv_b + \
                              self.config['recon_x_w'] * self.loss_gen_recon_x_a + \
                              self.config['recon_kl_w'] * self.loss_gen_recon_kl_a + \
                              self.config['recon_x_w'] * self.loss_gen_recon_x_b + \
                              self.config['recon_kl_w'] * self.loss_gen_recon_kl_b + \
                              self.config['recon_x_cyc_w'] * self.loss_gen_cyc_x_a + \
                              self.config['recon_kl_cyc_w'] * self.loss_gen_recon_kl_cyc_aba + \
                              self.config['recon_x_cyc_w'] * self.loss_gen_cyc_x_b + \
                              self.config['recon_kl_cyc_w'] * self.loss_gen_recon_kl_cyc_bab + \
                              self.config['vgg_w'] * self.loss_gen_vgg_a + \
                              self.config['vgg_w'] * self.loss_gen_vgg_b
        self.loss_gen_total.backward()
        self.gen_opt.step()
        self.x_a_recon, self.x_ab, self.x_aba = x_a_recon, x_ab, x_aba
        self.x_b_recon, self.x_ba, self.x_bab = x_b_recon, x_ba, x_bab

    def compute_vgg_loss(self, vgg, img, target):
        img_vgg = vgg_preprocess(img)
        target_vgg = vgg_preprocess(target)
        img_fea = vgg(img_vgg)
        target_fea = vgg(target_vgg)
        return torch.mean((self.instancenorm(img_fea) - self.instancenorm(target_fea)) ** 2)

    def dis_update(self, x_a, x_b):
        self.dis_opt.zero_grad()
        # encode
        h_a, n_a = self.gen_a.encode(x_a)
        h_b, n_b = self.gen_b.encode(x_b)
        # decode (cross domain)
        x_ba = self.gen_a.decode(h_b + n_b)
        x_ab = self.gen_b.decode(h_a + n_a)
        # D loss
        self.loss_dis_a = self.dis_a.calc_dis_loss(x_ba.detach(), x_a)
        self.loss_dis_b = self.dis_b.calc_dis_loss(x_ab.detach(), x_b)
        self.loss_dis_total = self.config['gan_w'] * self.loss_dis_a + self.config['gan_w'] * self.loss_dis_b
        self.loss_dis_total.backward()
        self.dis_opt.step()

    def get_current_errors(self):
        D_A = self.loss_dis_a.data[0]
        G_A = self.loss_gen_adv_a.data[0]
        kl_A = self.loss_gen_recon_kl_a.data[0]
        Cyc_A = self.loss_gen_cyc_x_a.data[0]
        D_B = self.loss_dis_b.data[0]
        G_B = self.loss_gen_adv_b.data[0]
        kl_B = self.loss_gen_recon_kl_b.data[0]
        Cyc_B = self.loss_gen_cyc_x_b.data[0]
        if self.config['vgg_w'] > 0:
            vgg_A = self.loss_gen_vgg_a
            vgg_B = self.loss_gen_vgg_b
            return OrderedDict([('D_A', D_A), ('G_A', G_A), ('Cyc_A', Cyc_A), ('kl_A', kl_A), ('vgg_A', vgg_A),
                                ('D_B', D_B), ('G_B', G_B), ('Cyc_B', Cyc_B), ('kl_B', kl_B), ('vgg_B', vgg_B)])
        else:
            return OrderedDict([('D_A', D_A), ('G_A', G_A), ('kl_A', kl_A), ('Cyc_A', Cyc_A), 
                                ('D_B', D_B), ('G_B', G_B), ('kl_B', kl_B), ('Cyc_B', Cyc_B)])

    def get_current_visuals(self):
        real_A = util.tensor2im(self.real_A.data)
        recon_A = util.tensor2im(self.x_a_recon.data)
        A_B = util.tensor2im(self.x_ab.data)
        ABA = util.tensor2im(self.x_aba.data)
        real_B = util.tensor2im(self.real_B.data)
        recon_B = util.tensor2im(self.x_b_recon.data)
        B_A = util.tensor2im(self.x_ba.data)
        BAB = util.tensor2im(self.x_b_recon.data)
        return OrderedDict([('real_A', real_A), ('A_B', A_B), ('recon_A', recon_A), ('ABA', ABA),
                            ('real_B', real_B), ('B_A', B_A), ('recon_B', recon_B), ('BAB', BAB)])

    def save(self, label):
        self.save_network(self.gen_a, 'G_A', label, self.gpu_ids)
        self.save_network(self.dis_a, 'D_A', label, self.gpu_ids)
        self.save_network(self.gen_b, 'G_B', label, self.gpu_ids)
        self.save_network(self.dis_b, 'D_B', label, self.gpu_ids)

    def update_learning_rate(self):
        lrd = self.config['lr'] / self.opt.niter_decay
        lr = self.old_lr - lrd
        for param_group in self.gen_a.param_groups:
            param_group['lr'] = lr
        for param_group in self.gen_b.param_groups:
            param_group['lr'] = lr
        for param_group in self.dis_a.param_groups:
            param_group['lr'] = lr
        for param_group in self.dis_b.param_groups:
            param_group['lr'] = lr

        print('update learning rate: %f -> %f' % (self.old_lr, lr))
        self.old_lr = lr