File size: 3,263 Bytes
aba0e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os.path
import torchvision.transforms as transforms
from data.base_dataset import BaseDataset, get_transform
from data.image_folder import make_dataset
from PIL import Image
import PIL
import random
import torch
from pdb import set_trace as st
class PairDataset(BaseDataset):
def initialize(self, opt):
self.opt = opt
self.root = opt.dataroot
self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A')
self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B')
self.A_paths = make_dataset(self.dir_A)
self.B_paths = make_dataset(self.dir_B)
self.A_paths = sorted(self.A_paths)
self.B_paths = sorted(self.B_paths)
self.A_size = len(self.A_paths)
self.B_size = len(self.B_paths)
transform_list = []
transform_list += [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
# transform_list = [transforms.ToTensor()]
self.transform = transforms.Compose(transform_list)
# self.transform = get_transform(opt)
def __getitem__(self, index):
A_path = self.A_paths[index % self.A_size]
B_path = self.B_paths[index % self.B_size]
B_img = Image.open(B_path).convert('RGB')
# B_img = Image.open(A_path.replace("low", "normal").replace("A", "B")).convert('RGB')
# A_img = self.transform(A_img)
B_img = self.transform(B_img)
w = B_img.size(2)
h = B_img.size(1)
w_offset = random.randint(0, max(0, w - self.opt.fineSize - 1))
h_offset = random.randint(0, max(0, h - self.opt.fineSize - 1))
B_img = B_img[:, h_offset:h_offset + self.opt.fineSize,
w_offset:w_offset + self.opt.fineSize]
if self.opt.resize_or_crop == 'no':
pass
# r,g,b = A_img[0]+1, A_img[1]+1, A_img[2]+1
# A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2.
# A_gray = torch.unsqueeze(A_gray, 0)
# input_img = A_img
# A_gray = (1./A_gray)/255.
else:
# A_gray = (1./A_gray)/255.
if (not self.opt.no_flip) and random.random() < 0.5:
idx = [i for i in range(B_img.size(2) - 1, -1, -1)]
idx = torch.LongTensor(idx)
B_img = B_img.index_select(2, idx)
if (not self.opt.no_flip) and random.random() < 0.5:
idx = [i for i in range(B_img.size(1) - 1, -1, -1)]
idx = torch.LongTensor(idx)
B_img = B_img.index_select(1, idx)
times = random.randint(self.opt.low_times,self.opt.high_times)/100.
input_img = (B_img+1)/2./times
input_img = input_img*2-1
A_img = input_img
r,g,b = input_img[0]+1, input_img[1]+1, input_img[2]+1
A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2.
A_gray = torch.unsqueeze(A_gray, 0)
return {'A': A_img, 'B': B_img, 'A_gray': A_gray, 'input_img':input_img,
'A_paths': A_path, 'B_paths': B_path}
def __len__(self):
return self.A_size
def name(self):
return 'PairDataset'
|