EnlightenGAN / datasets /combine_A_and_B.py
HenryGong's picture
Upload 84 files
aba0e05 verified
from pdb import set_trace as st
import os
import numpy as np
import cv2
import argparse
parser = argparse.ArgumentParser('create image pairs')
parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='../dataset/50kshoes_edges')
parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='../dataset/50kshoes_jpg')
parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/test_AB')
parser.add_argument('--num_imgs', dest='num_imgs', help='number of images',type=int, default=1000000)
parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)',action='store_true')
args = parser.parse_args()
for arg in vars(args):
print('[%s] = ' % arg, getattr(args, arg))
splits = os.listdir(args.fold_A)
for sp in splits:
img_fold_A = os.path.join(args.fold_A, sp)
img_fold_B = os.path.join(args.fold_B, sp)
img_list = os.listdir(img_fold_A)
if args.use_AB:
img_list = [img_path for img_path in img_list if '_A.' in img_path]
num_imgs = min(args.num_imgs, len(img_list))
print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list)))
img_fold_AB = os.path.join(args.fold_AB, sp)
if not os.path.isdir(img_fold_AB):
os.makedirs(img_fold_AB)
print('split = %s, number of images = %d' % (sp, num_imgs))
for n in range(num_imgs):
name_A = img_list[n]
path_A = os.path.join(img_fold_A, name_A)
if args.use_AB:
name_B = name_A.replace('_A.', '_B.')
else:
name_B = name_A
path_B = os.path.join(img_fold_B, name_B)
if os.path.isfile(path_A) and os.path.isfile(path_B):
name_AB = name_A
if args.use_AB:
name_AB = name_AB.replace('_A.', '.') # remove _A
path_AB = os.path.join(img_fold_AB, name_AB)
im_A = cv2.imread(path_A, cv2.CV_LOAD_IMAGE_COLOR)
im_B = cv2.imread(path_B, cv2.CV_LOAD_IMAGE_COLOR)
im_AB = np.concatenate([im_A, im_B], 1)
cv2.imwrite(path_AB, im_AB)