|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Variable |
|
|
|
from sync_batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, DataParallelWithCallback |
|
from sync_batchnorm.unittest import TorchTestCase |
|
|
|
|
|
def handy_var(a, unbias=True): |
|
n = a.size(0) |
|
asum = a.sum(dim=0) |
|
as_sum = (a ** 2).sum(dim=0) |
|
sumvar = as_sum - asum * asum / n |
|
if unbias: |
|
return sumvar / (n - 1) |
|
else: |
|
return sumvar / n |
|
|
|
|
|
def _find_bn(module): |
|
for m in module.modules(): |
|
if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, SynchronizedBatchNorm1d, SynchronizedBatchNorm2d)): |
|
return m |
|
|
|
|
|
class SyncTestCase(TorchTestCase): |
|
def _syncParameters(self, bn1, bn2): |
|
bn1.reset_parameters() |
|
bn2.reset_parameters() |
|
if bn1.affine and bn2.affine: |
|
bn2.weight.data.copy_(bn1.weight.data) |
|
bn2.bias.data.copy_(bn1.bias.data) |
|
|
|
def _checkBatchNormResult(self, bn1, bn2, input, is_train, cuda=False): |
|
"""Check the forward and backward for the customized batch normalization.""" |
|
bn1.train(mode=is_train) |
|
bn2.train(mode=is_train) |
|
|
|
if cuda: |
|
input = input.cuda() |
|
|
|
self._syncParameters(_find_bn(bn1), _find_bn(bn2)) |
|
|
|
input1 = Variable(input, requires_grad=True) |
|
output1 = bn1(input1) |
|
output1.sum().backward() |
|
input2 = Variable(input, requires_grad=True) |
|
output2 = bn2(input2) |
|
output2.sum().backward() |
|
|
|
self.assertTensorClose(input1.data, input2.data) |
|
self.assertTensorClose(output1.data, output2.data) |
|
self.assertTensorClose(input1.grad, input2.grad) |
|
self.assertTensorClose(_find_bn(bn1).running_mean, _find_bn(bn2).running_mean) |
|
self.assertTensorClose(_find_bn(bn1).running_var, _find_bn(bn2).running_var) |
|
|
|
def testSyncBatchNormNormalTrain(self): |
|
bn = nn.BatchNorm1d(10) |
|
sync_bn = SynchronizedBatchNorm1d(10) |
|
|
|
self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True) |
|
|
|
def testSyncBatchNormNormalEval(self): |
|
bn = nn.BatchNorm1d(10) |
|
sync_bn = SynchronizedBatchNorm1d(10) |
|
|
|
self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False) |
|
|
|
def testSyncBatchNormSyncTrain(self): |
|
bn = nn.BatchNorm1d(10, eps=1e-5, affine=False) |
|
sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) |
|
sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) |
|
|
|
bn.cuda() |
|
sync_bn.cuda() |
|
|
|
self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True, cuda=True) |
|
|
|
def testSyncBatchNormSyncEval(self): |
|
bn = nn.BatchNorm1d(10, eps=1e-5, affine=False) |
|
sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) |
|
sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) |
|
|
|
bn.cuda() |
|
sync_bn.cuda() |
|
|
|
self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False, cuda=True) |
|
|
|
def testSyncBatchNorm2DSyncTrain(self): |
|
bn = nn.BatchNorm2d(10) |
|
sync_bn = SynchronizedBatchNorm2d(10) |
|
sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) |
|
|
|
bn.cuda() |
|
sync_bn.cuda() |
|
|
|
self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10, 16, 16), True, cuda=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
unittest.main() |
|
|