File size: 2,835 Bytes
0571f08 93fdc79 0571f08 93fdc79 0571f08 93fdc79 0571f08 93fdc79 0571f08 93fdc79 0571f08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
base_model: huawei-noah/TinyBERT_General_4L_312D
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: NLP_Capstone
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NLP_Capstone
This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3176
- Accuracy: 0.8671
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5286 | 0.2 | 500 | 0.4169 | 0.8251 |
| 0.4299 | 0.4 | 1000 | 0.4137 | 0.8332 |
| 0.3856 | 0.6 | 1500 | 0.3714 | 0.8512 |
| 0.3692 | 0.8 | 2000 | 0.3176 | 0.8671 |
| 0.3604 | 1.0 | 2500 | 0.3869 | 0.8635 |
| 0.3457 | 1.2 | 3000 | 0.4126 | 0.8631 |
| 0.3291 | 1.41 | 3500 | 0.4272 | 0.8675 |
| 0.3481 | 1.61 | 4000 | 0.3754 | 0.8775 |
| 0.3253 | 1.81 | 4500 | 0.4293 | 0.8649 |
| 0.3306 | 2.01 | 5000 | 0.3807 | 0.8789 |
| 0.2849 | 2.21 | 5500 | 0.4291 | 0.8803 |
| 0.2824 | 2.41 | 6000 | 0.4058 | 0.8797 |
| 0.279 | 2.61 | 6500 | 0.4521 | 0.8761 |
| 0.2944 | 2.81 | 7000 | 0.4986 | 0.8747 |
| 0.3347 | 3.01 | 7500 | 0.4364 | 0.8815 |
| 0.2622 | 3.21 | 8000 | 0.5368 | 0.8703 |
| 0.2494 | 3.41 | 8500 | 0.4795 | 0.8854 |
| 0.2645 | 3.61 | 9000 | 0.4795 | 0.8864 |
| 0.243 | 3.81 | 9500 | 0.4570 | 0.8874 |
| 0.2399 | 4.01 | 10000 | 0.5219 | 0.8795 |
| 0.2103 | 4.22 | 10500 | 0.5325 | 0.8775 |
| 0.2196 | 4.42 | 11000 | 0.5629 | 0.8729 |
| 0.2494 | 4.62 | 11500 | 0.5087 | 0.8826 |
| 0.1968 | 4.82 | 12000 | 0.5332 | 0.8779 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|